Articles
All articles | Recent articles
Dependent Thermo-Mechanical Behavior of Novel Alumina-Based Refractories
A. Böhm1, C.G. Aneziris2, J. Malzbender1
1 Institute of Energy and Climate Research - 2, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany
2 Institute of Ceramic, Glass and Construction Materials, TU Bergakademie Freiberg, Agricolastrasse 17, D-09596 Freiberg, Germany
received January 29, 2014, received in revised form April 28, 2014, accepted May 6, 2014
Vol. 5, No. 2, Pages 167-171 DOI: 10.4416/JCST2014-00001
Abstract
Novel alumina-based refractories were assessed with regard to their thermo-mechanical behavior from room temperature to 1000 °C within the framework of the DFG SPP "FIRE" program. These refractories are being developed for use in slide gates or entry nozzles. Their elastic behavior was investigated with the impulse excitation technique. Wedge splitting tests were used to determine their fracture resistance behavior. The evaluated material characteristics and thermal shock resistance were compared to those of a standard refractory material, permitting conclusions to be drawn regarding the effect of the additives used (TiO2, ZrO2) on apparent elastic behavior, crack propagation and thermal shock resistance.
Download Full Article (PDF)
Keywords
Refractories, ceramics, elastic modulus, fracture, thermal shock
References
1 Li, Y.W., Aneziris, C.G., Yi, X.X., Jin, S.L., Li, N.: Formation of dumbbell-shaped β-SiC for the manufacturing of advanced composite refractories in the system Al2O3-ZrO2-C, Interceram-Refractory Manual, 20 – 23, (2005).
2 Aneziris, C.G., Dudczig, S., Gerlach, N., Berek, H., Veres, D.: Thermal shock performance of fine-grained Al2O3 ceramics with TiO2 and ZrO2 additions for refractory applications, Adv. Eng. Mater., 12, [6], 478 – 485, (2010).
3 Ohya, Y., Nakagawa, Z.: Grain-boundary microcracking due to thermal expansion anisotropy in aluminum titanate ceramics, J. Am. Ceram. Soc., 70, [8], 184 – 186, (1987).
4 Aneziris, C.G., Schaerfl, W., Ullrich, B.: Microstructure evaluation of Al2O3 ceramics with Mg-PSZ- and TiO2-additions, J. Eur. Ceram. Soc., 27, [10], 3191 – 3199, (2007).
5 Hasselman, D.P.H.: Thermal stress resistance parameters for brittle refractory ceramics – a compendium, Am. Ceram. Soc. Bull., 49, [12], 1033 – 1037, (1970).
6 Skiera, E.: Thermomechanical characterization of newly developed refractories, (in German), Ph.D. Thesis, RWTH Aachen, (2012).
7 Skiera, E., Malzbender, J., Mönch, J., Dudczig, S., Aneziris C.G., Steinbrech, R.W.: Controlled crack propagation experiments with a novel alumina-based refractory, Adv. Eng. Mater., 14, [4], 248 – 254, (2012).
8 ASTM E 1876 – 01: Standard test method for dynamic young's modulus, shear modulus, and poisson's ratio by impulse excitation of vibration, (2005).
9 Tschegg, E.: Test set-up for determining characteristic fracture-mechanical values and appropriate test specimens, (in German), AT 390 328 B, (1986).
10 Tschegg, E.: Set-up for introducing loads, (in German), AT 396 997 B, (1994).
11 Bornhauser, A., Kromp, K., Pabst, R.F.: R-curve evaluation with ceramic materials at elevated temperatures by an energy approach using direct observation and compliance calculation of the crack length, J. Mater. Sci., 20, 2585 – 2596, (1985).
12 Saxena, A. Hudak, S.J.: Review and extension of compliance information for common crack growth specimens, Int. J. Fracture, 14, [5], 453 – 468, (1978).
13 Wachtman jr., J.B., Tempt, W.E., Lam Jr., D.G., Apstkin, C.S.: Exponential temperature dependence of Young's modulus for several oxides, Phy. Rev., 122, [6], 1754 – 1759, (1961).
14 Souza, T.M., Mati, A.P.M., Brito, M.A.M., Pandolfelli, V.C.: Oxidation protection system for hot elastic modulus evaluation of refractory ceramics, Ceram. Int., (in press).
15 Pandolfelli, V.C., Rodriguez, J.A., Stevens, R.: Effects of TiO2 addition on the sintering of ZrO2·TiO2 compositions and on the retention of the tetragonal phase of zirconia at room temperature, J. Mater. Sci., 26, 5327 – 5334, (1991).
16 Joliff, Y., Absi, J., Huger, M., Glandus, J.C.: Experimental and numerical study of the elastic modulus vs. temperature of debonded model materials, Comp. Mater. Sci., 44, [2], 826 – 831, (2008).
17 Hübner, H., Jillek, W.: Subcritical crack extension and crack resistance in polycrystalline alumina, J. Mater. Sci., 12, 117 – 125, (1977).
18 Sakai, M., Bradt, R.C.: The crack growth resistance of non-phase-transforming ceramics, J. Ceram. Soc. Jpn., 96, [8], 801 – 809, (1988).
19 Steinbrech, R.W., Reichl, A., Schaarwachter, W.: R-curve behavior of long cracks in alumina, J. Am. Ceram. Soc., 73, [7], 2009 – 2015 (1990).
Copyright
Göller Verlag GmbH