Articles
All articles | Recent articles
Effect of X (X = Al3+, V3+, Sc3+, In3+ and Y3+) Doping on the Dielectric Properties of Lead-Free BZT Ceramics
Zhang Kaituo1, Xu Yuan1,2,3, Fu Lei3, Chen Ligui3, Jia Shikui3
1 College of Cable Engineering, Henan Institute of Technology, Xinxiang 453003, China
2 College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
3 School of Material Science and Engineering, Shaanxi University of Technology, Hanzhong 723003, China
received October 15, 2020, received in revised form February 16, 2021, accepted February 28, 2021
Vol. 12, No. 1, Pages 29-36 DOI: 10.4416/JCST2020-00026
Abstract
Al3+-, V3+-, Sc3+-, In3+- and Y3+-ion-doped lead-free X-BaZr0.15Ti0.85O3(X-BZT-15) ceramics were prepared with the solid-phase reaction method. The crystal structure, micromorphology, and dielectric properties of the X-BZT-15 ceramics were studied. X-ray diffractometry shows that the prepared ceramics have a perovskite structure. Raman spectroscopy shows that the doped ions of BZT-15 ceramics do not significantly change the vibration frequency of the A1(LO3) mode, but have a greater impact on the new A1 g mode. The unit cell volume first increases and then decreases as the ion radius increases. When the doped ion radius is less than 0.0885 nm (Sc3+), the substitution type of the doped cation is B-substitution. When the doping ion radius is greater than 0.0885 nm (Sc3+), the substitution type of the doped cations gradually changes from B-site substitution to A-site substitution. Electron scanning microscopy shows that the doping of Y3+ and V3+ can promote grain growth, and the doping of Sc3+ can refine the grains. The doping of Y3+ can promote polarization, the doping of V3+ can passivate the grain boundaries, and the doping of both ions can promote the improvement of dielectric properties. The diffuseness of the phase transition shows that as the ionic radius increases, the γ value increases. The doped ions are Sc3+, and the maximum value of γ is 1.877. Then γ decreases as the ion radius increases.
Download Full Article (PDF)
Keywords
Doped ionic radius, BZT, Curie-Weiss law, dielectric
References
1 Scott, J.F.: Applications of modern ferroelectrics, Science, 315, 954 – 959, (2007).
2 Li, Y., Moon, K.S., Wong, C.P.: Electronics without lead, Science, 308, 1419 – 1420, (2005).
3 Hennings, D., Schnell, A., Simon, G.: Diffuse ferroelectric phase transitions in Ba (Ti1-y Zry)O3 ceramics, J. Am. Ceram. Soc., 65, 539 – 544, (2010).
4 Haeni, J.H., Irvin, P., Chang, W.: Room-temperature ferroelectricity in strained SrTiO3, Nature, 430, 758 – 761, (2004).
5 Haertling, G.H.: Ferroelectric Ceramics: history and technology, J. Am. Ceram. Soc, 82, 797 – 818, (1999).
6 Novak, N., Weyland, F., Rossetti, G.A. Jr.: Electrocaloric properties and caloric figure of merit in the ferroelectric solid solution BaZrO3-BaTiO3 (BZT) J. Eur. Ceram. Soc., 41, 1280 – 1287, (2020).
7 Chang, W.K, Hsieh, S.F., Lee, Y.H.: X-ray diffraction studies of phase transformations between tetragonal and cubic phases in the BaSnxTi1-xO3 system, J. Mater. Sci., 33, 1765 – 1768, (1998).
8 Co, K., Khassaf, H., Alpay, S.P.: Electrocaloric and pyroelectric properties of barium zirconate titanate, J. Appl. Phys., 127, [17], 174102, (2020).
9 Xu, L., Xu, Y.: Effect of Zr4+ content on crystal structure, micromorphology, ferroelectric and dielectric properties of Ba(ZrxTi1-x)O3 ceramics, J. Mater. Sci.: Mater. Electron., 31, 5492 – 5498, (2020).
10 Sun, Z., Pu, Y., Dong, Z. et al.: Effect of zr 4+, content on the TC, range and dielectric and ferroelectric properties of BaZrxTi1-xO3, ceramics prepared by microwave sintering, Ceram. Int., 40, 3589 – 3594, (2014).
11 Wang, Y., Gao, S., Wang, T. et al.: Structure, dielectric properties of novel Ba(Zr,Ti)O 3 based ceramics for energy storage application, Ceram. Int., 46, 12080 – 12087, (2020).
12 Zhang, Y., Li, Y., Zhu, H. et al.: Low dielectric loss of Bi-doped BaZr0.15Ti0.85O3, ceramics for high-voltage capacitor application, Ceram. Int., S0272884217312877 (2017).
13 Muhammad, Q.K., Waqar, M., Rafiq M.A.et al.: Structural, dielectric, and impedance study of ZnO-doped barium zirconium titanate (BZT) ceramics. J. Mater. Sci., 51, 10048 – 10058 (2016).
14 Cao, W., Xiong, J., Sun, J.: Dielectric behavior of Nb-doped BaZrxTi(1-x)O3, Mater. Chem. Phys., 106, 338 – 342, (2007).
15 Li, Y., Cui, Z., Sang, R.et al.: Microstructure and dielectric behavior of ytterbium doped BaZr0.1Ti0.9O3 ceramics, Mat. Res., 19, 1376 – 1380, (2016).
16 Xi, K., Li, Y., Zheng, Z. et al.: Microstructure, dielectric properties, relaxation behavior, and ferroelectric properties of Gd-doped lead-free BZT ceramics by sol-gel process, J. Mater. Sci.: Mater. Electron., [8], 1 – 8, (2020).
17 Feng, H., Ji, H., Li, X.et al.: Effect of Al2O3 and MgO additives on dielectric properties of BaZrxTi1-xO3-based ceramics, Key Eng. Mater., 2 – 603:714 – 718 (2014).
18 Sun, Z., Li, L., Zheng, H. et al.: Dielectric properties and diffuse phase transition behavior of CuO-doped lead-free Ba(ZrxTi1-x)O3 ceramics, Ceram. Int., 12246 – 12252 (2016).
19 Yan, S., Zheng, Z., Li, Y.et al.: Effect of internal stresses on temperature-dependent dielectric properties of Fe-doped BZT ceramics, Ceram. Int., 12605 – 12608, (2017).
20 Khien, N.V., Huy, T.T., Hong, L.V.: AC conduction of Ba1-xCaxTiO3 and BZT-BCTx, Physica B., 532, 126 – 129 (2017).
21 Tian, Y., Li, S., Sun, S.et al.: Influence of europium doping on various electrical properties of low-temperature sintered 0.5Ba0.90Ca0.10TiO3-0.5BaTi0.88Zr0.12O3-0.1%CuOxEu lead-free Ceramics[J], J. Electron Mater., 684 – 691 (2018).
22 Kumar, R., Asokan, K., Patnaik, S. et al.: Evolution of relaxor properties in lanthanum (La) doped barium zirconate titanate, Ferroelectrics, 8 – 13, (2017).
23 Ghosh, S.K., Ganguly, M., Rout, S.K. et al.: Order-disorder correlation on local structure and photo-electrical properties of La3+ ion modified BZT ceramics, Eur. Phys. J. Plus, 130, 68, (2015).
24 Lu, D.Y., Sun, X.Y., Liu, B. et al.: Structural and dielectric properties, electron paramagnetic resonance, and defect chemistry of Pr-doped BaTiO3 ceramics, J. Alloy. Compd., 615, 25 – 34. (2014).
25 Liu, S., Xie, Q. et al.: Tunable electrocaloric and energy storage behavior in the ce, mn hybrid doped BaTiO3 ceramics, J. Eur. Ceram. Soc., 38, S0955221918303820, (2018).
26 Lu, D.Y.: Self-adjustable site occupations between Ba-site Tb3+ and Ti-site Tb4+ ions in terbium-doped barium titanate ceramics, Solid State Ion., 276, 98 – 106, (2015).
27 Ji, B., Chen, D., Jiao, X. et al.: Preparation and electrical properties of nanoporous BaTiO3, Mater. Lett., 64, 1836 – 1838, (2010).
28 Sun, Z., Liu, W., Li, Q. et al.: Relaxor behaviour and nonlinear dielectric properties of lead-free BZT-BZN composite ceramics, Ceram. Int., 47, 2086 – 2093, (2021).
29 Buscaglia, V., Saurabh, T. et al.: Average and local atomic-scale structure in BaZrxTi1-xO3 (x = 0.10, 0.20, 0.40) ceramics by high-energy x-ray diffraction and raman spectroscopy, J. Phys. Condens. Matter, (2014).
30 Ventura, J., Hernández, S., Polo, M.C. et al.: Discrimination of polar order extent in BaZrxTi1-xO3 epitaxial thin films by raman spectroscopy, Appl. Surf. Sci., 424374 – 377, (2017).
31 Pokorny, J., Pasha, U.M., Ben, L., Thakur, O.P., Sinclair, D.C., Reaney, I.M.: Use of raman spectroscopy to determine the site occupancy of dopants in BaTiO3, J. Appl. Phys., 109, 114110, (2011).
32 Zheng, P., Zhang, J.L., Tan, Y.Q. et al.: Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics, Acta Mater., 60, 5022 – 503, (2012).
33 Guo, F.Q., Zhang, B.H., Fan, Z.X. et al.: Grain size effects on piezoelectric properties of BaTiO3 ceramics prepared by spark plasma sintering, J. Mater. Sci.: Mater. Electron., 27, 5967 – 5971, (2016).
34 Wang, J.C., Zheng, P., Yin, R.Q. et al.: Different piezoelectric grain size effects in BaTiO3 ceramics, Ceram. Int., 41, 14165 – 14171, (2015).
35 Tian, X., Qu, S., Ma, H. et al.: Effect of grain size on dielectric and piezoelectric properties of bismuth layer structure CaBi2Nb2O9 ceramics, J. Mater. Sci.: Mater. Electron., 27, 1 – 5 (2016).
36 Tseng, C.F., Tseng, P.J., Chang, C.M. et al.: Novel temperature stable Li2MnO3 dielectric ceramics with high Q for LTCC applications, J. Am. Ceram. Soc., 6, 1918 – 1922 (2014).
37 Xu, Y., Zhang, K., Fu, L. et al.: Effect of MgO addition on sintering temperature, crystal structure, dielectric and ferroelectric properties of lead-free BZT ceramics, J. Mater. Sci: Mater. Electron., 30, 7582 – 7589, (2019).
38 Abassi, M., Dhahri, N., Dhahri, J. et al.: Structural and large magnetocaloric properties of La0.67-xYxBa0.23Ca0.1MnO3 perovskites (0≤x≤0.15)(0≤x≤0.15), Physica B: Condensed Matter, 138 – 143, (2014).
39 Reddy, S.B., Rao, M.S.R., Rao, K.P.: Observation of high permittivity in Ho substituted BaZr0.1Ti0.9O3 ceramic. Appl. Phys. Lett., 91, 022917 – 022917, (2007).
40 Polotai, A.V., Ragulya, A.V., Randall, C.A.: Preparation and size effect in pure nanocrystalline barium titanate ceramics, Ferroelectrics, 288, 93 – 102, (2003).
41 Vandamme, L.K.J., Khalfallaoui, A., Leroy, G. et al.: Thermal equilibrium noise with 1/f spectrum from frequency independent dielectric losses in barium strontium titanate, J. Appl. Phys., 107, 053717 – 053717, (2010).
Copyright
Göller Verlag GmbH