• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

(K0.5Na0.5)NbO3-Ba(Zn1/3Nb2/3)O3 Lead-Free Ceramics: Transmittance and Microstructure

Chenwei Li, Xin Xu, Zhenlin Lu

School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, People's Republic of China.

received August 21, 2019, received in revised form November 28, 2019, accepted December 18, 2019

Vol. 11, No. 1, Pages 36-43   DOI: 10.4416/JCST2019-00063

Abstract

Lead-free transmittance electro-optic ceramics (1 –x)(K0.5Na0.5)NbO3-xBa(Zn1/3Nb2/3)O3 (x = 0.03, 0.05, 0.07, 0.08, 0.09 and 0.11) (KNN-BZN) were prepared with the solid-state reaction technique. The effects of Ba(Zn1/3Nb2/3)O3 dopant content on the microstructure, phase transition, optical property, and electrical properties were studied systematically. The X-ray-diffraction and Raman spectroscopy results indicated that for KNN-BZN ceramics with increasing BZN content, the crystal structure transforms from the orthorhombic phase into the pseudo-cubic phase and finally to the tetragonal phase. The KNN-BZN ceramics (0.05 mm thickness) with x = 0.07 exhibited the highest transmittance of 43.00 % in the visible spectrum, which was due to the high relative density, low porosity, uniform microstructures, and high symmetry of the pseudo-cubic structure. Moreover, εr, tanδ, Pr and Ec are 975.9, 0.02, 2.231 μC/cm2 and 9.82 kV/cm, respectively. All of the above demonstrated that the KNN-xBZN ceramics could be promising lead-free transparent piezoceramics.

Download Full Article (PDF)

Keywords

Transparent ceramics, linear transmittance, phase structure

References

1 Masahiro, N., Yamaguchi, K., Toki, M.: ZrO2-Al2O3 composite ceramic material and production method thereof. US Patent 7012036 (2006). http://www.freepatentsonline.com/7012036.html

2 Wang, S.F., Zhang, J., Luo, D.W., Gu, F., Tang, D.Y., Dong, Z.L., Tan, G.E.B., Que, W.X., Zhang, T.S., Li, S., Kong, L.B.: Transparent ceramics: processing, materials and applications, Prog. Solid State Ch., 41, 20 – 54, (2013) https://doi.org/10.1016/j.progsolidstchem.2012.12.002

3 Haertling, G.H.: Improved hot-pressed electrooptic ceramics in the (Pb,La)(Zr,Ti)O3 system, J. Am. Ceram. Soc., 54, [6], 303 – 309, (1971). https://doi.org/10.1111/j.1151 – 2916.1971.tb12296.x

4 Haertling, G.H.: PLZT electrooptical materials and applications – a review, Ferroelectrics, 75, 25 – 55, (1987). https://doi.org/10.1080/00150198708008208

5 Li, K.K., Wang, W.Q.: Electro-optic ceramic material and device, WIPO Patent Application WO/2003/099740 (2003). http://www.freepatentsonline.com/WO2003099740.html

6 Jiang, H., Zou, Y.K., Chen, Q., Li, K.K., Zhang, R., Wang, Y.: Transparent electro-optic ceramics and devices, Optoelectronic Devices and Integration, 5644, 380 – 394, (2005).

7 Du, H.L., Tang, F.S., Liu, D.J., Zhu, D.M., Zhou, W.C., Qu, S.B.: The microstructure and ferroelectric properties of (K0.5Na0.5)NbO3 –LiNbO3 lead-free piezoelectric ceramics, B Mater. Sci. Eng., 136, 165 – 169, (2007). https://doi.org/10.1016/j.mseb.2006.09.031

8 Du, H.L., Liu, D.J., Tang, F.S., Zhu, D.M., Zhou, W.C.: Microstructure, piezoelectric, and ferroelectric properties of Bi2O3-added (K0.5Na0.5)NbO3 lead-free ceramics, J. Am. Ceram. Soc., 90, [9] 2824 – 2829, (2007). https://doi.org/10.1111/j.1551 – 2916.2007.01846.x

9 Du, H.L., Zhou, W.C., Zhu, D.M., Fa, L., Qu, S.B., Li, Y., Pei, Z.B.: Sintering characteristic, microstructure, and dielectric relaxor behavior of (K0.5Na0.5)NbO3-(Bi0.5Na0.5)TiO3 lead-free ceramics, J. Am. Ceram. Soc., 91, [9], 2903 – 2909, (2008). https://doi.org/10.1111/j.1551 – 2916.2008.02528.x

10 Li, K., Li, F.L., Wang, Y., Kwok, K.W., Chan, H.L.W.: Hot-pressed K0.48Na0.52Nb1–xBixO3 (x = 0.05 – 0.15) lead-free ceramics for electro-optic applications, Mater. Chem. Phys., 131, 320 – 324, (2011). https://doi.org/10.1016/j.matchemphys.2011.09.048

11 Li, F.L., Kwok, K.W.: Fabrication of transparent electro-optic (K0.5Na0.5)1–xLixNb1–xBixO3 lead-free ceramics, J. Eur. Ceram. Soc., 33, 123 – 130, (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.08.017

12 Liu, Z.Y., Fan, H.Q., Zhao, Y.W., Dong, G.Z.: Optical and tunable dielectric properties of K0.5Na0.5NbO3-SrTiO3 ceramics, J. Am. Ceram. Soc., 99, [1], 146 – 151, (2016). https://doi.org/10.1111/jace.13864

13 Liu, Z.Y., Fan, H.Q., Lei, S.H., Wang, J., Tian, H.L.: Fatigue properties and impedance analysis of potassium sodium niobate-strontium titanate transparent ceramics, Appl. Phys. A-Mater., 122, [10], 900, (2016). https://doi.org/10.1007/s00339 – 016 – 0437 – 5

14 Liu, Z.Y., Fan, H.Q., Peng, B.L.: Enhancement of optical transparency in Bi2O3-modified (K0.5Na0.5)(0.9)Sr0.1 Nb0.9Ti0.1O3 ceramics for electro-optic applications, J. Mater. Sci., 50, [24], 7958 – 7966, (2015). https://doi.org/10.1007/s10853 – 015 – 9360-y

15 ] Liu, Z.Y., Fan, H.Q., Lei, S.H., Ren, X.H., Long, C.B.: Duplex structure in K0.5Na0.5NbO3-SrZrO3 ceramics with temperature-stable dielectric properties, J. Eur. Ceram. Soc., 37, [1], 115 – 122, (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.07.024

16 Long, C.B., Li, T.Y., Fan, H.Q., Wu, Y., Zhou, L.C., Li, Y.W., Xiao, L.H., Li, Y.H.: Li-substituted K0.5Na0.5NbO3-based piezoelectric ceramics: crystal structures and the effect of atmosphere on electrical properties, J. Alloy. Compd., 658, 839 – 847, (2016). https://doi.org/10.1016/j.jallcom.2015.10.245

17 Sui, J.N., Fan, H.Q., Hu, B., Ning, L.: High temperature stable dielectric properties and enhanced energy-storage performance of (1-x)(0.85Na0.5Bi0.5TiO3-0.15Ba0.8Ca0.2Ti0.8Zr0.2O3)-xK0.5Na0.5NbO3 lead-free ceramics, Ceram. Int., 44, [15], 18054 – 18059, (2018). https://doi.org/10.1016/j.ceramint.2018.07.008

18 Wang, Y.Y., Yang, H., Zhang, Q.L.: Phase structure and polar characteristics of alkali niobate ceramics modified by Ba0.6Ca0.4ZrO3, Ceram. Int., 42, 929 – 935, (2016). http://dx.doi.org/10.1016/j.ceramint.2015.09.021

19 Yang, D., Ma, C., Yang, Z.P., Wei, L.L., Chao, X.L., Yang, Z.Y., Yang, J.L.: Optical and electrical properties of pressureless sintered transparent (K0.37Na0.63)NbO3-based ceramics, Ceram. Int., 42, 4648 – 4657, (2016). https://doi.org/10.1016/j.ceramint.2015.11.032

20 Chai, Q.Z., Zhao, X.M., Chao, X.L., Yang, Z.P.: Enhanced transmittance and piezoelectricity of transparent K0.5Na0.5NbO3 ceramics with Ca(Zn1/3Nb2/3)O3 additives, RSC Adv., 7, 28428, (2017).

21 Lin, C., Wu, X., Lin, M., Huang Y.P., Li, J.: Optical, luminescent and optical temperature sensing properties of (K0.5Na0.5)NbO3-ErBiO3 transparent ceramics, J. Alloy. Compd., 706 156 – 163, (2017). http://dx.doi.org/10.1016/j.jallcom.2017.02.245

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH