• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Influence of the Printing Parameters on the Quality of Alumina Ceramics Shaped by UV-LCM Technology

P. Ożóg1,2, G. Blugan1, D. Kata2, T. Graule1

1 Laboratory for High Performance Ceramics, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland
2 Faculty of Materials Science and Ceramics, University of Science and Technology, al. Adama Mickiewicza 30, 30 – 059 Cracow, Poland

received February 22, 2019, received in revised form July 6, 2019, accepted July 26, 2019

Vol. 10, No. 2, Pages 1-10   DOI: 10.4416/JCST2019-00023

Abstract

The commercial alumina dispersion LithaLox HP500 from Lithoz (Austria) was 3D-shaped on a customized LCM device equipped with a light engine emitting at a wavelength of 365 nm and pixel size of 20 μm. The precision of the green part fabrication was measured using gear geometry and different exposure energies. The effect of the layer thickness on the shaping of the green bodies and the sintered ceramics was also evaluated. Additionally, the strength of parts fabricated using different layer thickness was tested in ball-on-three-balls testing and their fracture surfaces were analysed.

Download Full Article (PDF)

Keywords

Alumina, LCM, 3D printing, UV-curing, photopolymerisation

References

1 Halloran, J.W.: Ceramic Stereolithography: additive manufacturing for ceramics by photopolymerization, Annu. Rev. Mater. Res., 46, [1], 19 – 40, (2016).

2 Zocca, A., Colombo, P., Gomes, C.M., Günster, J.: Additive manufacturing of Ceramics: issues, potentialities, and opportunities, J. Am. Ceram. Soc., 98, [7], 1983 – 2001, (2015).

3 Ligon, S.C., Liska, R., Stampfl, J., Gurr, M., Mülhaupt, R.: Polymers for 3D printing and customized additive manufacturing, Chem. Rev., 17, [15], 10212 – 10290, (2017).

4 Deckers, J., Vleugels, J., Kruth, J., Introduction, I.: Additive manufacturing of Ceramics: A review, J. Ceram. Sci. Technol., 5, [4], 245 – 260, (2014).

5 Wang, W., Yu, H., Liu, Y., Jiang, X., Gao, B.: Trueness analysis of zirconia crowns fabricated with 3-dimensional printing, J. Prosthet. Dent., 121, [2], 285 – 291, (2019).

6 Azarmi, F., Amiri, A.: Microstructural evolution during fabrication of alumina via laser stereolithography technique, Ceram. Int., 45, [1], 271 – 278, (2019).

7 Lu, Z.L., Cao, J.W., Jing, H., et al.: Review of main manufacturing processes of complex hollow turbine blades, Virtual Phys. Prototyp., 8, [2], 87 – 95, (2013).

8 Osman, R.B., Veen, A.J. Van Der, Huiberts, D., Wismeijer, D.: 3D-printing zirconia implants; a dream or a reality? an in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs, J. Mech. Behav. Biomed. Mater., 75, 521 – 528, (2017).

9 Romero, A.D.B., Pfaffinger, M., Mitteramskogler, G., Lantada, A.D., Stampfl, J.: Lithography-based additive manufacture of ceramic biodevices with design-controlled surface topographies, Int. J. Adv. Manuf. Technol., 1547 – 1555, (2017).

10 Díaz Lantada, A., de Blas Romero, A., Schwentenwein, M., Jellinek, C., Homa, J., García-Ruíz, J.P.: Monolithic 3D labs- and organs-on-chips obtained by lithography-based ceramic manufacture, Int. J. Adv. Manuf. Technol., 93, [9 – 12], 3371 – 3381, (2017).

11 Johansson, E., Lidström, O., Johansson, J., Lyckfeldt, O., Adolfsson, E.: Influence of resin composition on the defect formation in alumina manufactured by stereolithography, Materials (Basel)., 10, [138], 11, (2017).

12 Zanchetta, E., Cattaldo, M., Franchin, G., et al.: Stereolithography of SiOC ceramic microcomponents, Adv. Mater., 28, 370 – 376, (2016).

13 Schwarzer, E., Götz, M., Markova, D., Stafford, D., Scheithauer, U., Moritz, T.: Lithography-based ceramic manufacturing (LCM) – viscosity and cleaning as two quality influencing steps in the process chain of printing green parts, J. Eur. Ceram. Soc., 37, [16], 5329 – 5338, (2017).

14 Schwarzer, E., Holtzhausen, S., Scheithauer, U., et al.: Process development for additive manufacturing of functionally graded alumina toughened zirconia components intended for medical implant application, J. Eur. Ceram. Soc., 39, [2 – 3], 522 – 530, (2019).

15 Lantada, A.D., Romero, A.D.B., Schwentenwein, M., Jellinek, C., Homa, J.: Lithography-based ceramic manufacture (LCM) of auxetic Structures: present capabilities and challenges, Smart Mater. Struct., 25, [5], 10, (2016).

16 Varghese, G., Moral, M., Castro-garcía, M., et al.: Fabrication and characterisation of ceramics via low-cost DLP 3D printing, Boletín la Soc. Española Cerámica y Vidr., 57, 9 – 18, (2018).

17 Schwentenwein, M., Homa, J.: Additive manufacturing of dense alumina ceramics, Int. J. Appl. Ceram. Technol., 12, [1], 1 – 7, (2015).

18 Lithoz GmbH: Slurry data sheet LithaLox HP 500.

19 Schwentenwein, M., Schneider, P., Homa, J.: Lithography-based ceramic Manufacturing: A novel technique for additive manufacturing of high-performance ceramics, Adv. Sci. Technol., 88, 60 – 64, (2014).

20 Lithoz GmbH: Process parameters LithaLox HP500.

21 Wefers, K., Misra, C.: Oxides and hydroxides of aluminum alcoa technical paper No. 19, Revised, 1987(1987).

22 Danzer, R., Harrer, W., Supancic, P., Lube, T., Wang, Z., Börger, A.: The ball on three balls test-strength and failure analysis of different materials, J. Eur. Ceram. Soc., 27, 1481 – 1485, (2007).

23 Börger, A., Supancic, P., Danzer, R.: The ball on three balls test for strength testing of brittle discs: stress distribution in the disc, J. Eur. Ceram. Soc., 22, 1425 – 1436, (2002).

24 European Committee for Standarization: DIN EN 843 – 5 Advanced technical ceramics – Mechanical properties of monolithic ceramics at room temperature – Part 5: Statistical analysis, (2006).

25 European Committee for Standarization: BS EN 623 – 3 Advanced technical ceramics — Monolithic ceramics — General and textural properties - Part 3: Determination of grain size and size distribution (characterized by the linear intercept method), (2001).

26 Michálek, M., Michálková, M., Blugan, G., Kuebler, J.: Strength of pure alumina ceramics above 1 GPa, Ceram. Int., 44, [3], 3255 – 3260, (2018).

27 Mitteramskogler, G., Gmeiner, R., Felzmann, R., et al.: Light curing strategies for lithography-based additive manufacturing of customized ceramics, Addit. Manuf., 1, 110 – 118, (2014).

28 Harrer, W., Danzer, R., Supancic, P., Lube, T.: Influence of the sample size on the results of B3B-tests, Key Eng. Mater., 409, 176 – 184, (2009).

29 Harrer, W., Schwentenwein, M., Lube, T., Danzer, R.: Fractography of zirconia-specimens made using additive manufacturing (LCM) technology, J. Eur. Ceram. Soc., 37, [14], 4331 – 4338, (2017).

30 Börger, A., Supancic, P., Danzer, R.: The ball on three balls test for strength testing of brittle discs: part II: analysis of possible errors in the strength determination, J. Eur. Ceram. Soc., 24, [10 – 11], 2917 – 2928, (2004).

31 Quinn, G.D., Xu, K., Gettings, J.R., Swab, J.: Standard reference material 2100: Fracture toughness of ceramics, (2001).

32 European Committee for Standarization: DIN EN 843 – 6:2009 – 12 Advanced technical ceramics – Mechanical properties of monolithic ceramics at room temperature – Part 6: Guidance for fractographic investigation, (2009).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH