Articles
All articles | Recent articles
Hot Corrosion Behavior of ZrB2-SiC-Graphite Composite in NaCl and Na2SO4 Molten Salts
X. Liu1, G. Wang2, L. Liu2, Z. Wang1, Z. Wu1, M. Liu1
1 School of Aeronautics and Astronautics, Faculty of Vehicle Engineering and Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China.
2 Beijing Institute of Aerospace Systems Engineering, Beijing 100076, China.
received March 6, 2018, received in revised form April 18, 2018, accepted April 28, 2018
Vol. 9, No. 3, Pages 309-318 DOI: 10.4416/JCST2018-00020
Abstract
In the present work, the hot corrosion behavior of ZrB2-SiC-graphite (G) composite in different media at 900 and 1000 °C was investigated in detail. The results indicated that the ZrB2-SiC-G composite became slightly corroded in NaCl molten salts owing to the ZrB2 phase of the ZrB2-SiC-G composite being oxidized by oxygen molecules dissolved in the NaCl molten salts. However, the ZrB2-SiC-G composite underwent more severe corrosion in Na2SO4 molten salts, owing to the complex oxidation and sulfidation reaction of the ZrB2-SiC-G composite exposed to oxygen molecules and decomposition products of Na2SO4 at high temperature.
Download Full Article (PDF)
Keywords
ZrB2-based composites, molten salts, hot corrosion, sulfidation
References
1 Lin, J., Zhang, X.H., Han, J.C., Han, W.B., Zhao, W.G.: Oxidation behavior and phase transition of ZrB2-SiCw-ZrO2f ceramic, Corros Sci., 78, 13 – 21, (2014).
2 Lin, J., Huang, Y., Zhang, H., et al.: Characterization of hot-pressed short ZrO2 fiber toughened ZrB2-based ultra-high temperature ceramics, Mater. Charact., 95, 272 – 77, (2014).
3 Wang, L.L., Fang, G.D., Liang, J., Wang, C.: Formation mechanism and high temperature mechanical property characterization of SiC depletion layer in ZrB2/SiC ceramics, Mater. Charact., 95, 245 – 51, (2014).
4 Asl, M.S., Nayebi, B., Ahmadi, Z., et al.: Fractographical characterization of hot pressed and pressureless sintered SiAlON-doped ZrB2-SiC composites, Mater Charact., 102, 137 – 45, (2015).
5 Raua, J.V., Ferrob, D., Falconec, M.B., Generosia, A., Rossi Albertinia, V., et al.: Hardness of zirconium diboride films deposited on titanium substrates, Mater. Chem. Phys., 112, 504 – 09, (2008).
6 Tian, W.B., Kann, Y.M., Zhang, G.J., Wang, P.L.: Effect of carbon nanotubes on the properties of ZrB2-SiC ceramics, Mater. Sci. Eng. A., 487, 568 – 73, (2008).
7 Zimmermann, J.W., Hilmas, G.E., Fahrenholtz, W.G.: Thermophysical properties of ZrB2 and ZrB2-SiC ceramics, J. Am. Ceram.Soc., 91, 1405 – 11, (2008).
8 Guo, S.Q., Kagawa, Y., Nishimura, T., Tanaka, H.: Thermal and electrical properties in hot-pressed ZrB2-MoSi2-SiC composites, J. Am. Ceram. Soc., 90, 2255 – 58, (2007).
9 Fahrenholtz, W.G.: Thermodynamic analysis of ZrB2-SiC Oxidation: formation of a SiC-depleted region, J. Am. Ceram. Soc., 90, [1], 143 – 48, (2007).
10 Opeka, M.M., Talmy, I.G., Zaykoski, J.A.: Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: theoretical considerations and historical experience, J. Mater. Sci., 39, 5887 – 904, (2004).
11 Van Wie, D.M., Drewry Jr, D.G., King, D.E., Hudson, C.M.: The hypersonic environment: required operating conditions and design challenges, J. Mater. Sci., 39, 5915 – 24, (2004).
12 Zhang, X.H., Xu, L., Du, S.Y., Han, J.C., Hu, P., et al.: Fabrication and mechanical properties of ZrB2-SiCw ceramic matrix composite, Mater. Lett., 62, 1058 – 60, (2008).
13 Yang, F.Y., Zhang, X.H., Han, J.C., Du, S.Y.: Processing and mechanical properties of short carbon fibers toughened zirconium diboride-based ceramics, Mater. Des., 29, 1817 – 20, (2008).
14 Wang, Y.G., Liu, W., Cheng, L.F., Zhang, L.T.: Preparation and properties of 2D C/ZrB2-SiC ultra high temperature ceramic composites, Mater. Sci. Eng. A., 524, 129 – 33, (2009).
15 Yang, F.Y., Zhang, X.H., Han, J.C., Du, S.Y.: Characterization of hot-pressed short carbon fiber reinforced ZrB2-SiC ultra-high temperature ceramic composites, J. Alloy. Compd., 472, 395 – 99, (2009).
16 Han, J.C., Hu, P., Zhang, X.H., Meng, S.H.: Oxidation behaviour of zirconium diboride-silicon carbide at 1800 °C, Scripta Mater., 57, 825 – 2, (2007)
17 Vijay, V., Bhuvaneswari, S., Biju, V.M.: Influence of titanium silicide active filler on the microstructure evolution of borosiloxane-derived Si-B-O-C ceramics, J. Ceram. Sci. Technol., 7, [1], 97 – 105, (2016).
18 Zhang, X.H., Wang, Z., Sun, X., Han, W.B., Hong, C.Q.: Effect of graphite flake on the mechanical properties of hot pressed ZrB2-SiC ceramics, Mater. Lett., 62, 4360 – 62, (2008).
19 Wang, Z., Hong, C.Q., Zhang, X.H., Sun, X., Han, J.C.: Microstructure and thermal shock behavior of ZrB2-SiC-graphite composite, Mater. Chem. Phys., 113, 338 – 41, (2009)
20 Chen, H.B., Wang, Z., Meng, S.H., Bai, G.H., Qu, W.: The failure mechanism of ZrB2-SiC-graphite composite heated by high electric current, Mater. Lett., 63, 2346 – 48, (2009).
21 Zhang, X.H., Wang, Z., Hu, P., Han, W.B., Hong, C.Q.: Mechanical properties and thermal shock resistance of ZrB2-SiC ceramic toughened with graphite flake and SiC whiskers, Scripta Mater., 61, 809 – 12, (2009).
22 Lee, S.H., Sakka, Y., Kagawa, Y.: Corrosion of ZrB2 powder during wet processing-analysis and control, J. Am. Ceram. Soc., 91, 1715 – 17, (2008).
23 Huang, T., Hilmas, G.E., Fahrenholtz, W.G., Leu, M.C.: Dispersion of zirconium diboride in an aqueous, high-solids paste, Int. J. Appl. Ceram. Technol., 4, 470 – 79, (2007).
24 Monticelli, C., Bellosi, A., Dal Colle, M.: Electrochemical behavior of ZrB2 in aqueous solutions, J. Electrochem. Soc., 151, B331 – B339, (2004).
25 Monticelli, C., Zucchi, F., Pagnoni, A., Dal Colle, M.: Corrosion of a zirconium diboride/silicon carbide composite in aqueous solutions, Electrochim. Acta, 50, 3461 – 69, (2005).
26 Lavrenko, V.O., Shvets, V.A., Talash, V.M., Kotenko, V.A., Khomko, T.V.: Electrochemical oxidation of ZrB2-MoSi2 ceramics in a 3 % NaCl solution, Powder Metall. Met. Ceram., 50, 749 – 53, (2012).
27 Zhao, G., Huang, C., He, N.: Mechanical properties, strengthening and toughening mechanisms of reactive-hot-pressed TiB2-SiC-Ni ceramic composites, J. Ceram. Sci. Technol., 8, [2], 233 – 242, (2017).
28 Uusitalo, M.A., Vuoristo, P.M.J., Mäntylä, T.A.: High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits, Corros. Sci., 46, 1311 – 31, (2004).
29 Wang, L., Cheng, J., Qiao, Z.: Tribological behaviors of in situ TiB2 ceramic reinforced TiAl-based composites under sea water environment, Ceram. Int., 43, [5], 4314 – 4323, (2017).
30 Kazemzadeh Dehdashti, M., Fahrenholtz, W.G., Hilmas, G.E.: Effects of transition metals on the oxidation behavior of ZrB2 ceramics, Corros. Sci., 91, 224 – 31, (2015).
31 Li, N., Hu, P., Zhang, X.H., Liu, Y.Z., Han, W.B.: Effects of oxygen partial pressure and atomic oxygen on the microstructure of oxide scale of ZrB2-SiC composites at 1500 °C, Corros. Sci., 73, 44 – 53, (2013).
32 Smith, G., Burstein, G.T.: Degradation of the Pt/C air cathode in acidic solution examined by cyclic thermammetry, J. Power Sources, 196, 9188 – 94, (2011).
33 Tripp, W.C., Graham, H.C.: Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800 – 1500 °C, J. Electrochem. Soc., 118, 1195 – 209, (1971).
34 Burstein, G.T., Carboneras, M., Daymond, B.T.: The temperature dependence of passivity breakdown on a titanium alloy determined by cyclic noise thermammetry, Electrochim. Acta, 55, 7860 – 66, (2010).
35 Kuriakose, A.K., Margrave, J.L.: The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures, J. Electrochem. Soc., 111, 827 – 31, (1964).
36 Hu, P., Wang, G.L., Wang, Z.: Oxidation mechanism and resistance of ZrB2-SiC composites, Corros. Sci., 51, 2724 – 32, (2009)
37 Yao, X.Y., Li, H.J., Zhang, Y.L., Ren, J.J., Yao D.J., et al.: A SiC/ZrB2-SiC/SiC oxidation resistance multilayer coating for carbon/carbon composites, Corros. Sci., 57, 148 – 53, (2012).
38 Tang, S.F., Deng, J.Y., Wang, S.J., Liu, W.C.: Comparison of thermal and ablation behaviors of C/SiC composites and C/ZrB2-SiC composites, Corros. Sci., 51, 54 – 61, (2009).
39 Zhang, K., Liu, M.M., Liu, S.L., Sun, C., Wang, F.H.: Hot corrosion behaviour of a cobalt-base super-alloy K40S with and without NiCrAlYSi coating, Corros. Sci., 53, 1990 – 98, (2011).
40 Zhang, Z.T., Sridhar, S., Cho, J.W.: An Investigation of the Evaporation of B2O3 and Na2O in F-Free Mold Slags. ISIJ int., 51, 80 – 87, (2011).
Copyright
Göller Verlag GmbH