• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Room-Temperature Mechanochemical Synthesis and Consolidation of Nanocrystalline HfB2-HfO2 Composite Powders

N. Akçamlı1,2, D. Ağaoğulları1, Ö. Balcı3, M. L. Öveçoğlu1, İ. Duman1

1 Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, Particulate Materials Laboratories (PML), 34469 Maslak, Istanbul, Turkey
2 Bursa Technical University, Faculty of Natural Sciences, Architecture and Engineering, Department of Metallurgical and Materials Engineering, Yıldırım 16330, Bursa, Turkey
3 Koç University, Department of Chemistry, Rumelifeneri Yolu, 34450 Sarıyer, Istanbul, Turkey

received November 4, 2017, received in revised form January 7, 2018, accepted February 12, 2018

Vol. 9, No. 2, Pages 101-118   DOI: 10.4416/JCST2017-00084

Abstract

This study reports on the in-situ preparation of HfB2-HfO2 composite powders at room temperature by means of mechanochemical synthesis (MCS) from HfCl4-B2O3-Mg powder blends. The effects of milling duration and excess amounts of B2O3 and Mg reactants (20 and 30 wt%) on the HfB2 formation mechanism were investigated. After MCS and purification, HfB2, HfO2 and Mg2Hf5O12 phases were obtained. The Mg2Hf5O12 phase decomposed during the annealing treatment conducted at 1000 °C under Ar flow. The as-synthesized, purified, annealed and subsequently leached powders were characterized with an X-ray diffractometer (XRD), stereomicroscope (SM), scanning electron microscope (SEM), transmission electron microscope (TEM) and particle size analyzer (PSA). The HfB2-HfO2 composite powders with an average particle size of 140 nm and predominantly rounded morphology were consolidated with cold pressing/pressureless sintering (PS) and spark plasma sintering (SPS) techniques. The relative density values of the HfB2-HfO2 composites obtained by means of PS (with 2 wt% Co) and SPS techniques were 91.82 % and 93.79 %, respectively. A relatively high densification rate for the HfB2-HfO2 ceramic was achieved by means of Co addition, which was considered a promising sintering aid for HfB2-based ceramics. The HfB2-HfO2 composite sample consolidated with SPS exhibited hardness, wear volume loss amount and friction coefficient values of 18.45 GPa, 4.30 mm3 and 0.60, respectively.

Download Full Article (PDF)

Keywords

HfB2-HfO2 composites, powders, solid state reaction, sintering, microstructure-final, mechanical properties

References

1 Rapp, B.: Materials for extreme environments: Defense, aviation, and space agencies are beginning to look at the advanced composite materials necessary for hypersonic speeds, Mater. Today, 9, [6], (2006).

2 Orru, R., Cao, G.: Comparison of reactive and non-reactive spark plasma sintering routes for the fabrication of monolithic and composite ultra high temperature ceramics (UHTC) materials, Materials, 6, 1566 – 1583, (2013).

3 Cincotti, A., Licheri, R., Locci, A.M., Orru, R., Cao, G.: A review on combustion synthesis of novel materials: recent experimental and modeling results, J. Chem. Technol. Biot., 78, 122 – 127, (2003).

4 Zhang, X., Li, W., Hong, C., Han, W.: Microstructure and mechanical properties of ZrB2 based composites reinforced and toughened by zirconia, Int. J. Appl. Ceram. Tec., 5, 499 – 504, (2008).

5 Basu, B., Vleugels, J., Biest, O.: Development of ZrO2-ZrB2 composites, J. Alloy. Compd., 334, 200 – 204, (2001).

6 Balcı, Ö., Ağaoğulları, D., Duman, İ., Öveçoğlu, M.L.: Carbothermal production of ZrB2-ZrO2 ceramic powders from ZrO2-B2O3/B system by high-energy ball milling and annealing assisted process, Ceram. Int., 38, 2201 – 2207, (2012).

7 Huang, F., Yan, A., Fu, Z., Yin, S., Zhang, F., Qiang, Y.: Self-assembled synthesis of TiO2/TiB2 nanowall and its photocatalytic properties, J. Alloy. Compd., 574, 49 – 53, (2013).

8 Huang, F., Fu, Z., Yan, A., Wang, W., Wang, H., Wang, Y., Zhang, Q.: Several shape-controlled TiO2/TiB2 hybrid materials with a combined growth mechanism, Mater. Lett., 63, 2655 – 2658, (2009).

9 Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., Zaykoski, J.A.: Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc., 90, 1347 – 1364, (2007).

10 Opeka, M.M., Talmy, I.G., Wuchina, E.J., Zaykoski, J.A., Causey, S.J.: Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds, J. Eur. Ceram. Soc., 19, 2405 – 2414, (1999).

11 Wang, J., Li, H.P., Stevens, R.: Hafnia and hafnia-toughened ceramics, J. Mater. Sci., 27, 5397 – 5430, (1992).

12 Kumar, H.P., Vidya, S., Kumar, S.S., Vijayakumar, C., Solomon, S., Thomas, J.K.: Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis, J. Asian Ceram. Soc., 3, 64 – 69, (2015).

13 Toraya, H., Yoshimura, M., Somiya, S.: Hydrothermal reaction-sintering of monoclinic HfO2, J. Am. Ceram. Soc., 65, 159 – 160, (1982).

14 Ramadoss, A., Krishnamoorthy, K., Kim, S.J.: Facile synthesis of hafnium oxide nanoparticles via precipitation method, Mater. Lett., 75, 215 – 217, (2012).

15 Paul, A., Jayaseelan, D.D., Venugopal, S., Zapata-Solvas, E., Binner, J.G.P., Vaidhyanathan, B., Lee, W.E.: UHTC composites for hypersonic applications, Am. Ceram. Soc. Bull., 91, 22 – 28, (2012)

16 Ni, D.W., Zhang, G.J., Kan, Y.M., Wang, P.L.: Synthesis of monodispersed fine hafnium diboride powders using carbo/borothermal reduction of hafnium dioxide, J. Eur. Ceram. Soc., 91, 2709 – 2712, (2008).

17 Suryanarayana, C.: Mechanical alloying and milling, Prog. Mater. Sci., 46, 1 – 184, (2001).

18 Bateni, A., Repp, S., Thomann, R., Acar, S., Erdem, E., Somer, M.: Defect structure of ultrafine MgB2 nanoparticles, Appl. Phys. Lett., 105, 202605, (2014).

19 Genc, R., Alas, M.O., Harputlu, E., Repp, S., Kremer, N., Castellano, M., Colak, S.G., Ocakoglu, K., Erdem, E.: High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots, Sci. Reports, 7, 11222, (2017).

20 Erdem, E., Semmelhack, H.C., Bottcher, R., Rumpf, H., Banys, J., Matthes, A., Glasel, H.J., Hirsch, D., Hartmann, E.: Study of the tetragonal-to-cubic phase transition in PbTiO3 nanopowders, J. Phys.-Condens. Mat., 18, 3861 – 3874, (2006).

21 Akçamlı, A., Ağaoğulları, D., Balcı, Ö., Öveçoglu, M.L., Duman, İ.: Synthesis of HfB2 powders by mechanically activated borothermal reduction of HfCl4, Ceram. Int., 42, 3797 – 3807, (2016).

22 Akçamlı, N., Ağaoğulları, D., Balcı, Ö., Öveçoğlu, M.L., Duman, İ.: Mechanical activation-assisted autoclave processing and sintering of HfB2-HfO2 ceramic powders, Ceram. Int., 42, 14642 – 14655, (2016).

23 Akçamlı, N., Ağaoğulları, D., Balcı, Ö., Öveçoğlu, M.L., Duman, İ.: Synthesis of bulk nanocrystalline HfB2 from HfCl4-NaBH4-Mg ternary system, J. Mater. Sci., 52, 12689 – 12705, (2017).

24 Chen, L., Gu, Y., Shi, L., Yang, Z., Ma, J., Qian, Y.: Synthesis and oxidation of nanocrystalline HfB2, J. Alloy Compd., 368, 353 – 356, (2004).

25 Kravchenko, S.E., Burlakova, A.G., Korobov, I.I.: Preparation of hafnium diboride nanopowders in an anhydrous Na2B4O7 ionic melt, Inorg. Mater., 51, 380 – 383, (2015).

26 Li, W., Zhang, X., Hong, C., Han, W., Han, J.: Preparation, microstructure and mechanical properties of ZrB2-ZrO2 ceramics, J. Eur. Ceram. Soc., 29, 779 – 786, (2009).

27 Kiisk, V., Lange, S., Utt, K., Tätte, T., Mändar, H., Sildos, I.: Photoluminescence of sol-gel-prepared hafnia, Physica B, 405, 758 – 762, (2010).

28 Pavasupree, S., Suzuki, Y., Pivsa-Art, S., Yoshikawa, S.: Preparation and characterization of mesoporous MO2 (M= Ti, Ce, Zr, and Hf) nanopowders by a modified sol-gel method, Ceram. Int., 31, 959 – 963, (2005).

29 Tang, W.T., Ying, Z.F., Hu, Z., Li, W.W., Sun, J., Xu, N., Wu, J.D.: Synthesis and characterization of HfO2 and ZrO2 thin films deposited by plasma assisted reactive pulsed laser deposition at low temperature, Thin Solid Films, 518, 5442 – 5446, (2010).

30 Yoshimura, M., Somiya, S.: Hydrothermal synthesis of crystallized nano-particles of rare earth-doped zirconia and hafnia, Mater. Chem. Phys., 61, 1 – 8, (1999).

31 Meskin, P.E., Sharikov, F.Y., Ivanov, V.K., Churagulov. B.R., Tretyakov. Y.D.: Rapid formation of nanocrystalline HfO2 powders from amorphous hafnium hydroxide under ultrasonically assisted hydrothermal treatment, Mater. Chem. Phys., 104, 439 – 443, (2007).

32 Telle, R., Sigl, L.S., Takagi. K.: Boride-based hard materials. In: Handbook of ceramic hard materials. Wiley, Weinheim, 2000.

33 Silvestroni, L., Sciti, D.: Effects of MoSi2 additions on the properties of Hf- and Zr-B2 composites produced by pressureless sintering, Scr. Mater., 57, 165 – 168, (2007).

34 Wang, H., Lee, S.H., Kim, H.D.: Nano-hafnium diboride powders synthesized using a spark plasma sintering apparatus, J. Am. Ceram. Soc., 95, 1493 – 1496, (2012).

35 Balcı, Ö., Ağaoğulları, D., Muhaffel, F., Öveçoğlu, M.L., Çimenoğlu, H., Duman, İ.: Effect of sintering techniques on the microstructure and mechanical properties of niobium borides, J. Eur. Ceram. Soc., 36, 3113 – 3123, (2016).

36 Wang, H., Lee, S.H., Feng, L.: HfB2-SiC composite prepared by reactive spark plasma sintering, Ceram. Int., 40, 11009 – 11013, (2014).

37 Venugopal, S., Boakye, E.E., Paul, A., Keller, K., Mogilevsky, P., Vaidhyanathan, B., Binner, J.G.P., Katz, A., Brown, P.M.: Sol-gel synthesis and formation mechanism of ultra high temperature ceramic HfB2, J. Am. Ceram. Soc., 97, 1 – 8, (2013).

38 Barraud, E., Bégin-Colin, S., Le Caër, G., Villieras, F., Barres, O.: Thermal decomposition of HfCl4 as a function of its hydration state, J. Solid State Chem., 179, 1842 – 1851, (2006).

39 Nyquist, R.A., Kagel, R.O.: Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts. In: Infrared Spectra of Inorganic Compounds (3800 – 45 cm-1). Academic Press, New York, 1971.

40 Xia, S., Xing, P., Gao, S.: Studies on the basic compounds of magnesia cement: the thermal behaviour of magnesium oxychlorides, Thermochim. Acta, 183, 349 – 363, (1991).

41 Wu, K., Jin, Z.: Thermodynamic assessment of the HfO2-MgO system, Calphad, 21, 411 – 420, (1997).

42 Samad, A.A., Lugscheider, E., Bobzin, K., Maes, M.: The influence of post heat treatment processes on thermal fatigue resistance of thermally sprayed coatings. In: Thermal Spray 2004: Advances in technology and tpplications. ASM International, Osaka, Japan, 2004.

43 Ağaogulları, D., Öveçoğlu, M.L., Duman, İ.: Synthesis of LaB6 powders from La2O3, B2O3 and Mg blends via a mechanochemical route, Ceram. Int., 38, 6203 – 6214, (2012).

44 Lok, J.Y., Logan, K.V., Payyapilly, J.J.: Acid leaching of SHS produced magnesium oxide/titanium diboride, J. Am. Ceram. Soc., 92, 26 – 31, (2009).

45 El-Eskandarany, M.S.: Mechanical Alloying for Fabrication of Advanced Engineering Materials. N.Y: Noyes Publications, Norwich, 2001.

46 Sonber, J.K., Murthy, T.C., Subramanian, C., Kumar, S., Fotedar, R.K., Suri, A.K.: Investigations on synthesis of HfB2 and development of a new composite with TiSi2, Int. J. Refract. Met. Hard. Mater., 28, 201 – 210, (2010).

47 Zou, J., Zhang, G.J., Kan, Y.M.: Pressureless densification and mechanical properties of hafnium diboride doped with B4C: from solid state sintering to liquid phase sintering, J. Eur. Ceram. Soc., 30, 2699 – 2705, (2010).

48 Monteverde, F.: Ultra-high temperature HfB2-SiC ceramics consolidated by hot-pressing and spark plasma sintering, J. Alloy. Compd., 428, 197 – 205, (2007).

49 Ni, D.W., Liu, J.X., Zhang, G.J.: Pressureless sintering of HfB2-SiC ceramics doped with WC, J. Eur. Ceram. Soc., 32, 3627 – 363, (2012).

50 Weng, L., Zhang, X., Han, W., Han, J.: Fabrication and evaluation on thermal stability of hafnium diboride matrix composite at severe oxidation condition, Int. J. Refract. Met. Hard Mater., 27, 711 – 717, (2009).

51 Sciti, D., Silvestroni, L., Bellosi, A.: Fabrication and properties of HfB2-MoSi2 composites produced by hot pressing and spark plasma sintering, J. Mater. Res., 21, 1460 – 1466, (2006).

52 Chakraborty, S., Debnath, D., Mallick, A.R., Das, P.K.: Mechanical and thermal properties of hot pressed ZrB2 system with TiB2, Int. J. Refract. Met. Hard Mater., 46, 35 – 42, (2014).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH