Articles
All articles | Recent articles
Why Alkaline Activation – 60 Years of the Theory and Practice of Alkali-Activated Materials
P. Krivenko
Scientific Research Institute for Binders and Materials, Kyiv National University of Construction and Architecture, Povitroflotskyi prospect 31, Kyiv 03037 Ukraine
received June 14, 2017, received in revised form August 1, 2017, accepted August 24, 2017
Vol. 8, No. 3, Pages 323-334 DOI: 10.4416/JCST2017-00042
Abstract
Sixty years ago, just the idea of the presence of free alkalis in a cement matrix was considered by ordinary Portland cement people to be absurd, and this was a basic postulate accepted in cement chemistry. In 1957, a scientist from Kyiv, Ukraine (then, USSR), Victor Glukhovsky, put forward an assumption that was taken as a basis for development and realization of a principally new class of cementitious materials, which first appeared under the name of "alkaline cements" (nowadays also known under the general name of "alkali-activated cements"). The validity of these ideas is confirmed by more than 60 years of evolutionary development and vast experience collected from the practical use of these new materials in a variety of large-scale applications. The present review covers theoretical views on the role played by alkali in the formation of cement stone structure. Examples of compositional build-up of alkali-activated cementitious materials as a function of the quantity of the alkali and type of aluminosilicate component are reported, as well as the findings of analysis of alkali-activated cement concrete structures.
Download Full Article (PDF)
Keywords
Alkaline activation, aluminosilicate, cement, concrete, durability, hydration products, terminology
References
1 Malinowski, R.: Ancient mortars and concretes: aspects of their durability. History of Technology, 7, 9 – 101, (1982).
2 Malinowski, R., Stalkine, A., Ben Yair, M.: Durability of roman mortars and concretes for hydraulic structures at caesarea and tiberias. In: Proceed. Int. Symp. on Durability of Concrete, Prague, 1 – 14, (1961).
3 Malinowski, R.: Concrete and mortars in ancient aqueducts. Concrete International, 1.01, 66 – 67, (1979).
4 Sokol, E.V., Gaskova, O.L., Kozmenko, O. A., Kokh, S.N., Vapnik, E.A., Novikova, S.A., Nigmatulina E.N.: Clastic dikes of the hatrurim basin (western flank of the dead sea) as natural analogues of alkaline concretes: Mineralogy, solution chemistry, and durability. In: Doklady Earth Science, Pleiades Publishing, Ltd., 459, Part 1, 1436 – 1441, (2014).
5 Langdon, C.A., Roy, D.M.: Longevity of borehole and shaft sealing materials: characterization of ancient cement-based building materials. Mater. Res. Soc. Symp. P., 26, 546 – 549, (1984).
6 Davidovich, J.: Ancient and modern concretes: what is the real difference? Concrete International, 9, 23 – 29, (1988).
7 Glukhovsky, V.D.: Ancient, modern and future concretes. In: Proceedings of the 2nd International Seminar, Gothenburg, Sweden, 53 – 62, (1989).
8 Whiting, J.: Manufacture of cement. US Patent No 544706, (1895).
9 Kühl, H.: Chemistry of cement, in German, Band III, Verlag Technik, Berlin, 1958.
10 Feret, R.: Slags for the manufacture of cement, Rev. Mater. Constr. Tr. Publications, 1 – 145, (1939).
11 Purdon, A.: The action of alkalis on blast furnace slag, J. Soc. Chem Ind., 59, 191 – 202, (1940).
12 Glukhovsky, V.D., Pashkov, I.A., Yavorsky, G.A.: New building material, in Russian, Bulletin of Technical Information, GlavKievStroy, Kiev, 1957.
13 Davidovich, J.: Synthetic mineral polymer compound of the silicoaluminates family and preparation progress, US Patent, 4, 472, 199, (1984).
14 Krivenko, P.: Synthesis of cementitious materials of the Me2O-MeO-Me2O3-SiO2-H2O system with required properties, in Russian, DSc (Eng) Thesis, Kiev Polytechnical University, Kyiv, 1986.
15 Malek, R.I., Licastro, P.H., Roy, D.M., Langton, C.A.: Slag cement-low level radioactive waste forms at savannah river plant, Am. Ceram. Soc. Bull., 65, 1578 – 1583, (1986).
16 Langton, C.A., Roy, D.M.: Longevity of bore hole and shaft sealing materials, characterization of ancient cement-blast building materials, Scientific Basis of Nuclear Waste Management, 26, 543 – 9, (1984).
17 Krivenko, P.V.: Special alkaline cements, in Russian, Budivel'nyk Publish., Kiev, 1995.
18 Glukhovsky, V.D.: Soil silicate articles and structures, in Russian, Budivel'nyk Publish., Kiev, 1967.
19 Ginzburg, I.J., Rukavishikova, I.A.: Minerals of the ancient zone of weathering of the ural mountains, Academy of Sciences of the USSR, Moscow, 1951.
20 Skurchinskaya, Zh.: Synthesis of analogs of natural minerals to obtain an artificial stone, in Russian, PhD Thesis, Lvov Polytechnical University, Lvov, 1973.
21 Kriven, W.M., Bell, J.L., Mallicoat, S.W., Gordon, M.: Intrinsic microstructure and properties of metakaolin-based geopolymers. In: Proceedings of the International Workshop on Geopolymer Binders-Interdependence of Composition, Structure and Properties, 71 – 86, 2006.
22 Krivenko, P., Kovalchuk, G.: Hydration dehydration structure formation processes in geocements. Geopolymer binders. In: Proceedings of the International Workshop on Geopolymer Binders-Interdependence of Composition, Structure and Properties, 97 – 118, 2007.
23 Cherkinsky, Yu.S.: Chemistry of polymeric inorganic binding substances, in Russian, Khimiia Publish., Leningrad, 1967.
24 Fyfe, W.S., Turner, F.J., Verhoogen, J.: Metamorphic reactions and metamorphic facies, Geological Society of America Memoirs, New York, 1958.
25 Strelko, V.V.: Mechanism of silicic acids polymerization, in Russian. Colloid, 32, [3], 430 – 436, (1970).
26 Iljuhin, V.V., Kuznetsov, V.A., Lobachov, A.N., Bakshutov, V.S.: Hydrosilicates of calcium. Synthesis of monocrystals and crystallochemistry, in Russian, Nauka Publish., Moscow, 1979.
27 Pfeiffer, P., Simons, H.: Internal complex salts of the alkaline earth metals, in German, Ber. Dtsch. Chem. Ges., 76, [9], 847 – 855, (1943).
28 Pfeiffer, P.: Main results of my complex chemical investigations, in German, Ber. Dtsch. Chem. Ges., 77, [6 – 7], (1944).
29 Özçelik, V.O., White, C.E.: Nanoscale charge balancing mechanism in alkali substituted calcium-silicate-hydrate gels, J. Phys. Chem. Lett., 7, [24], 5266 – 5272, (2016).
30 Krivenko, P.V.: Alkaline cements: terminology, classification, aspects of durability. In: Proceedings of the 10th Congress on the Chemistry of Cements, Sweden, Vol. 4 iv 046, 1997.
31 Glukhovsky, V.D., Krivenko, P.V., Skurchinskaya, Zh.V. et al.: Alkaline and alkaline-alkaline earth hydraulic binders and concretes, in Russian, Vysscha Shkola Publish., Kiev, 1979.
32 Provis, J., Deventer, J.: Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM. Vol. 13. Springer Science & Business Media, 2014.
33 Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., Fernández-Jiménez, A.: A review on alkaline activation: new analytical perspectives, Mater. Construcc., 64, [315], 1 – 25, (2014).
34 Glasser, F.P.: The roles of alkalis in controlling phase development in calcium aluminosilicate binders. In: Proceedings of the 1st Int. Conf. "Alkaline cements and concretes". Krivenko P. (ed.), 485 – 492, Kiev, 1994.
35 Myers, R.J., Bernal, S.A., San Nicolas, R., Provis, J.L.: Generalized structural description of calcium-sodium aluminosilicate hydrate gels: The crosslinked substituted tobermorite model, Langmuir, 29, [17], 5294 – 5306, (2013).
36 Ben Haha, M., Le Saout, G., Winnefeld, F., Lothenbach, B.: Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags, Cement Concrete Res., 41, [3], 301 – 310, (2011).
37 San Nicolas, R., Provis, J.L.: Interfacial transition zone in alkali-activated slag concrete. In: Twelfth International Conference on Recent Advances in Concrete Technology and Sustainability Issues, Prague, Czech Republic. Supplementary Papers CD-ROM. American Concrete Institute, Detroit (2012).
38 Bernal, S.A., San Nicolas, R., Provis, J.L., Mejía de Gutiérrez, R., van Deventer, J.S.J.: Natural carbonation of aged alkali-activated slag concretes, Mater. Struct., 47, [4], 693 – 707, (2014), doi: 10.1617/s11527 – 013 – 0089 – 2.
39 Popel, G.N.: Synthesis of a mineral-like stone on alkaline aluminosilicate binders to produce materials with increased corrosion resistance. In: Proceedings of the 2nd International Conference "Alkaline cements and concretes" (Ed. Krivenko, P.), 208 – 219, Kiev, 1999.
40 Krivenko, P.V.: Fly ash-alkali cements and concretes. In: Proceedings of the 4th CANMET-ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Istanbul. 1992.
41 Garcia-Lodeiro, I., Fernández-Jiménez, A., Palomo, A. Hydration kinetics in hybrid binders: early reaction stages, Cement Concrete Comp., 39, 82 – 92, (2013). doi: 10.1016/j.cemconcomp.2013.03.025.
42 Davidovits, J.: Mineral polymers and methods of making them. U.S. Patent No 4, 349, 386 (1982).
43 Krivenko, P., Kovalchuk, G.: Directed synthesis of alkaline aluminosilicate minerals in a geocement matrix, J. Mater. Sci., 42, [9], 2944 – 2952, (2007).
44 Criado, M., Fernández-Jiménez, A., De La Torre, A.G., Aranda, M.A.G., Palomo, A.: An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash, Cement Concrete Res., 37, 671 – 679, (2007).
45 Shi, C., Fernandez Jimenez, A., Palomo, A.: New cements for the 21st century: The pursuit of an alternative to portland cement, Cement Concrete Res., 41, [7], 750 – 763, (2011).
46 Hannus, I., Kiricsi, I., Lentz, P., Nagy, J.B: Characterization of alkali ions in the Y-type zeolites by multi MAS NMR studies, Colloid Surface A, 158, [1], 29 – 34, (1999).
47 Fernández-Jiménez, A., Palomo, A., Sobrados, I., Sanz, J.: The role played by the reactive alumina content in the alkaline activation of fly ashes, Micropor. Mesopor. Mat., 91, 111 – 119, (2006). doi: 10.1016/j.micromeso.2005.11.015.
48 Fernández-Jiménez, A., Palomo, A., Alonso, M.M.: Alkali activation of fly ashes: Mechanisms of reaction. In: Proceedings of the Conference on Non-Traditional Cement and Concrete II, Ed. Bilek, V. and Kersner, Z. Brno University of Technology, Brno, Czech Republic, 2005. ISBN: 80 – 214 – 2853 – 8.
49 Alonso, S., Palomo, A.: Alkaline activation of metakaolin-calcium hydroxide solid mixtures: Influence of temperature, activator concentration and metakaolin/Ca(OH)2 ratio, Mater. Lett., 47, 55 – 62, (2001). doi: 10.1016/S0167 – 577X(00)00212 – 3.
50 Yip, C.K., Lukey, G.C., Deventer, J.S.J.: The coexistence of geopolymeric and calcium silicate hydrate at the early stage of alkaline activation, Cement Concrete Res., 35, 1688 – 1697, (2005). doi: 10.1016/j.cemconres.2004.10.042.
51 Palomo, A., Fernández-Jiménez, A., Kovalchuk, G., Ordoñez, L.M., Naranjo, M.C.: OPC-fly ash cementitious system. study of the gel binders produced during alkaline hydration, J. Mater. Sci., 42, 2958 – 2966, (2007). doi: 10.1007/s10853 – 006 – 0585 – 7.
52 Garcia-Lodeiro, I., Fernández-Jiménez, A., Palomo, A.: Hydration kinetics in hybrid binders: early reaction stages, Cement Concrete Comp., 39, 82 – 92, (2013). doi: 10.1016/j.cemconcomp.2013.03.025.
53 Garcia-Lodeiro, I., Fernández-Jiménez, A., Palomo, A.: Variation in hybrid cements over time. Alkaline activation of fly ash-portland cement blends, Cement Concrete Res., 52, 112 – 122, (2013). doi: 10.1016/j.cemconres.2013.03.022.
54 Puertas, F., Fernández-Jiménez, A.: Mineralogical and microstructural characterization of alkali-activated fly ash/slag pastes, Cement Concrete Res., 25, [3], 287 – 292, (2003). doi: 10.1016/S0958 – 9465(02)00059 – 8.
55 Higuera, I., Varga, C., Palomo, J.G., Gil-Maroto, A., Vázquez, T., Puertas, F.: Mechanical behaviour of alkali-activated blast furnace slag-activated metakaolin blended pastes. Statistical study, Mater. Construcc., 62, [306], 163 – 181, (2012). doi: 10.3989/mc.2012.00111.
56 Bernal S.A., Mejía de Gutierrez R., Ruíz F., Quiñones H., Provis J.L.: High-temperature performance of mortars and concretes based on alkali-activated slag/metakaolin blends, Mater. Construcc., 62, [308], 471 – 488, (2012). doi: 10.3989/mc.2012.01712.
57 Mejía J.M., Mejía de Gutierrez R., Puertas F.: Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems, Mater. Construcc., 63, 311, 361 – 375, (2013). doi: 10.3989/mc.2013. 04712.
58 Glukhovsky, V.D.: Soil silicates, in Russian, Gosstroyizdat Publish., Kiev, 1959.
Copyright
Göller Verlag GmbH