• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Structural Studies of Pr Nickelate-Cobaltite – Y-Doped Ceria Nanocomposite

V.A. Sadykov1,2, N.F. Eremeev1, Z.S. Vinokurov1,2, A.N. Shmakov1,2,3, V.V. Kriventsov1,3, A.I. Lukashevich1, A.V. Krasnov1, A.V. Ishchenko1,2

1 Boreskov Institute of Catalysis SB RAS, Novosibirsk, 630090, Russia,
2 Novosibirsk State University, Novosibirsk, 630090, Russia,
3 Budker Institute of Nuclear Physics SB RAS, Novosibirsk, 630090, Russia.

received October 31, 2016, received in revised form November 2, 2016, accepted January 19, 2017

Vol. 8, No. 1, Pages 129-140   DOI: 10.4416/JCST2016-00099

Abstract

Being stable to carbonization, praseodymium nickelates-cobaltites and their nanocomposites are promising materials for intermediate-temperature solid oxide fuel cells (IT SOFC) cathodes and oxygen separation membranes. This work aims to elucidate specificity of their structure and transport properties on the basis of synchrotron radiation studies. PrNi0.5Co0.5O3-δ (PNC), Ce0.9Y0.1O2-δ (YDC), Ce0.65Pr0.25Y0.1O2-δ (YPDC), CeO2 and PrO2-δ powders were synthesized with the Pechini technique. PNC – YDC nanocomposite was obtained via ultrasonic dispersion. The materials were characterized in in situ synchrotron XRD analyses with unit cell volume relaxation (CVR) and extended X-ray absorption fine structure (EXAFS). Bulk and surface oxygen mobility and reactivity were studied with O2 temperature-programmed desorption and CVR methods. Strong cation redistribution between domains was revealed. Fast oxygen diffusion and exchange in the PNC – YDC nanocomposite were shown to be determined by developed interface and variation in the Pr3+/4+ cations' charge in the Y-Pr-Ce-O domains. Selected compositions were deposited as functional layers in asymmetric membranes for oxygen separation. According to the test results, the membranes demonstrated promising performance.

Download Full Article (PDF)

Keywords

Oxygen separation membranes, nanocomposites, synchrotron radiation, oxygen mobility, performance

References

1 Sadykov, V., Mezentseva, N., Arapova, M., Krieger, T., Gerasimov, E., Alikina, G., Pelipenko, V., Bobin, A., Muzykantov, V., Fedorova, Y., Sadovskaya, E., Eremeev, N., Belyaev, V., Okhlupin, Y., Uvarov, N.: Fast oxygen transport in bismuth oxide containing nanocomposites, Solid State Ionics, 251, 34 – 39, (2013).

2 Ji, Y., Kilner, J.A., Carolan, M.F.: Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ) – La0.8Sr0.2MnO3±δ (LSM) composites, Solid State Ionics, 176, 937 – 943, (2005).

3 Wincewicz, K.C., Cooper, J.S.: Taxonomies of SOFC material and manufacturing alternatives, J. Power Sources, 140, 280 – 296, (2005).

4 Oh, D., Gostovic, D., Wachsman, E.D.: Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation, J. Mater. Res., 27, 1992 – 1999, (2012).

5 Bucher, E., Sitte, W.: Long-term stability of the oxygen exchange properties of (La,Sr)1-z(Co,Fe)O3-δ in dry and wet atmospheres, Solid State Ionics, 192, 480 – 482, (2011).

6 Sadykov, V.A., Pavlova, S.N., Kharlamova, T.S., Muzykantov, V.S., Uvarov, N.F., Okhlupin, Y.S., Ishchenko, A.V., Bobin, A.S., Mezentseva, N.V., Alikina, G.M., Lukashevich, A.I., Krieger, T.A., Larina, T.V., Bulgakov, N.N., Tapilin, V.M., Belyaev, V.D., Sadovskaya, E.M., Boronin, A. I., Sobyanin, V.A., Bobrenok, O.F., Smirnova, A.L., Smorygo, O.L., Kilner, J.A.: Perovskites and their nanocomposites with fluorite-like oxides as materials for solid oxide fuel cells cathodes and oxygen-conducting membranes: Mobility and reactivity of the surface/bulk oxygen as a key factor of their performance. In: Perovskites: Structure, properties and uses. Nova Science Publishers, New York, USA, 2010.

7 Steele,B.C.H.: State-of-the-art SOFC ceramic materials. In: Proceedings of the 1. European SOFC Forum. Baden, Switzerland, 1994.

8 Sadykov, V., Smirnova, A., Lukashevich, A., Vostrikov, Z., Rogov, V., Krieger, T., Ishchenko, A., Zaikovsky, V., Bobrova, L., Ross, J., Smorygo, O., Smirnova, A., Rietveld, B., van Berkel, F.: Nanocomposite catalysts for steam reforming of methane and biofuels: Design and performance. In Advances in Nanocomposites - Synthesis, Characterization and Industrial Applications. InTech, Rijeka, Croatia, 2011.

9 Sadykov, V.A., Eremeev, N.F., Sadovskaya, E.M., Bobin, A.S., Fedorova, Y.E., Muzykantov, V.S., Mezentseva, N.V., Alikina, G.M., Kriger, T.A., Belyaev, V.D., Rogov, V.A., Ulikhin, A.S., Okhlupin, Y.S., Uvarov, N.F., Bobrenok, O.F., McDonald, N., Watton, J., Dhir, A., Steinberger-Wilckens, R., Mertens, J., Vinke, I.C.: Cathodic materials for intermediate-temperature solid oxide fuel cells based on praseodymium nickelates-cobaltites, Russ. J. Electrochem., 50, 669 – 679, (2014).

10 Sadykov, V., Eremeev, N., Alikina, G., Sadovskaya, E., Muzykantov, V., Pelipenko, V., Bobin, A., Krieger, T., Belyaev, V., Ivanov, V., Ishchenko, A., Rogov, V., Ulihin, A., Uvarov, N., Okhlupin, Y., Mertens, J., Vinke, I.: Oxygen mobility and surface reactivity of PrNi1-xCoxO3+δ – Ce0.9Y0.1O2-δ cathode nanocomposites, Solid State Ionics, 262, 707 – 712, (2014).

11 Sadykov, V., Eremeev, N., Sadovskaya, E., Bobin, A., Ishchenko, A., Pelipenko, V., Muzykantov, V., Krieger, T., Amanbaeva, D.: Oxygen mobility and surface reactivity of PrNi1-xCoxO3-δ perovskites and their nanocomposites with Ce0.9Y0.1O2-δ by temperature-programmed isotope exchange experiments, Solid State Ionics, 273, 35 – 40, (2015).

12 Sadykov, V.A., Eremeev, N.F., Bolotov, V.A., Tanashev, Y.Y., Fedorova, Y.E., Amanbayeva, D.G., Bobin, A.S., Sadovskaya, E.M., Muzykantov, V.S., Pelipenko, V.V., Lukashevich, A.I., Krieger, T.A., Ishchenko, A.V., Smirnova, A.L.: The effect of microwave sintering on stability and oxygen mobility of praseodymium nickelates-cobaltites and their nanocomposites. Solid State Ionics, 288, 76 – 81, (2016).

13 Sadykov, V.A., Pavlova, S.N., Vinokurov, Z.S., Shmakov, A.N., Eremeev, N.F., Fedorova, Y.E., Kriventsov, V.V., Bolotov, V.A., Tanashev, Y.Y., Sadovskaya, E.M., Cherepanova, S.V.: Application of SR methods for the study of nanocomposite materials for hydrogen energy, Phys. Procedia, 84, 397 – 406 (2016).

14 Borchert, H., Frolova, Y.V., Kaichev, V.V., Prosvirin, I.P., Alikina, G.M., Lukashevich, A.I., Zaikovskii, V.I., Moroz, E.M., Trukhan, S.N., Ivanov, V.P., Paukshtis, E.A., Bukhtiyarov, V.I., Sadykov, V.A.: Electronic and chemical properties of nanostructured cerium dioxide doped with praseodymium, J. Phys. Chem. B, 109, 5728 – 5738, (2005).

15 Sinev, M.Y., Graham, G.W., Haack, L.P., Shelef, M.: Kinetic and structural studies of oxygen availability of the mixed oxides Pr1-xMxOy (M = Ce, Zr), J. Mater. Res., 11, 1960 – 1971, (1996).

16 Tai, L.-W., Nasrallah, M.M., Anderson, H.U., Sparlin, D.M., Sehlin, S.R.: Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3. Solid State Ionics, 76, 259 – 271, (1995).

17 Sadykov, V.A., Pavlova, S., Zarubina, V., Bobin, A., Alikina, G., Lukashevich, A., Muzykantov, V., Usoltsev, V., Kharlamova, T., Boronin, A., Koscheev, S., Krieger, T., Ishchenko, A., Mezentseva, N., Salanov, A., Smirnova, A., Bobrenok, O., Uvarov, N.: Design and characterization of functionally graded cathode materials for solid oxide fuel cells. ECS Trans., 25, 2403 – 2412, (2009).

18 Sadykov, V., Mezentseva, N., Usoltsev, V., Sadovskaya, E., Ishchenko, A., Pavlova, S., Bespalko, Y., Kharlamova, T., Zevak, E., Salanov, A., Krieger, T., Belyaev, V., Bobrenok, O., Uvarov, N., Okhlupin, Y., Smorygo, O., Smirnova, A., Singh, P., Vlasov, A., Korobeynikov, M., Bryazgin, A., Kalinin, P., Arzhannikov, A.: Solid oxide fuel cell composite cathodes based on perovskite and fluorite structures, J. Power Sources, 196, 7104 – 7109, (2011).

19 Sadykov, V., Alikina, G., Lukashevich, A., Muzykantov, V., Usoltsev, V., Boronin, A., Koscheev, S., Krieger, T., Ishchenko, A., Smirnova, A., Bobrenok, O., Uvarov, N.: Design and characterization of LSM/ScCeSZ nanocomposite as mixed ionic-electronic conducting material for functionally graded cathodes of solid oxide fuel cells. Solid State Ionics, 192, 540 – 546, (2011).

20 Sadykov, V., Usoltsev, V., Yeremeev, N., Mezentseva, N., Pelipenko, V., Krieger, T., Belyaev, V., Sadovskaya, E., Muzykantov, V., Fedorova, Y., Lukashevich, A., Ishchenko, A., Salanov, A., Okhlupin, Y., Uvarov, N., Smorygo, O., Arzhannikov, A., Korobeynikov, M., Thumm, M.K.A.: Functional nanoceramics for intermediate temperature solid oxide fuel cells and oxygen separation membranes, J. Eur. Ceram. Soc., 33, 2241 – 2250, (2013).

21 Sadykov, V.A., Eremeev, N.F., Usol'tsev, V.V., Bobin, A.S., Alikina, G.M., Pelipenko, V.V., Sadovskaya, E.M., Muzykantov, V.S., Bulgakov, N.N., Uvarov, N.F.: Mechanism of oxygen transfer in layered lanthanide nickelates Ln2-xNiO4+δ (Ln = la, Pr) and their nanocomposites with Ce0.9Gd0.1O2-δ and Y2(Ti0.8Zr0.2)1.6Mn0.4O7-δ solid electrolytes, Russ. J. Electrochem., 49, 645 – 651, (2013).

22 Aulchenko, V.M., Evdokov, O.V., Kutovenko, V.D., Pirogov, B.Y., Sharafutdinov, M.R., Titov, V.M., Tolochko, B.P., Vasiljev, A.V., Zhogin, I. A., Zhulanov, V.V.: One-coordinate X-ray detector OD-3M. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 603, 76 – 79, (2009).

23 Lutterotti, L., Wenk, H., Matthies, S.: MAUD (Material Analysis Using Diffraction): A user friendly Java program for Rietveld Texture Analysis and more. In: Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12). Montreal, Canada, 1999.

24 Loponov, K.N., Kriventsov, V.V., Nagabhushana, K.S., Boennemann, H., Kochubey, D.I., Savinova, E.R.: Combined in situ EXAFS and electrochemical investigation of the oxygen reduction reaction on unmodified and Se-modified Ru/C, Catal. Today, 147, 260 – 269, (2009).

25 Koningsberger, D.C., Mojet, B.L., van Dorssen, G.E., Ramaker, D.E.: XAFS spectroscopy; fundamental principles and data analysis, Top. Catal., 10, 143 – 155, (2000).

26 Klementev, K.V.: Extraction of the fine structure from X-ray absorption spectra, J. Phys. D. Appl. Phys., 34, 209 – 217, (2001).

27 Sklyarov, A.V.: Reactions on catalyst surfaces under programmed-heating conditions, Russ. Chem. Rev., 55, 214 – 221, (1986).

28 Sadykov, V., Okhlupin, Y., Yeremeev, N., Vinokurov, Z., Shmakov, A., Belyaev, V., Uvarov, N., Mertens, J.: In situ X-ray diffraction studies of Pr2-xNiO4+δ crystal structure relaxation caused by oxygen loss, Solid State Ionics, 262, 918 – 922, (2014).

29 Huang, S., Lu, Q., Feng, S., Li, G., Wang, C.: PrNi0.6Co0.4O3 – Ce0.8Sm0.2O1.9 composite cathodes for intermediate temperature solid oxide fuel cells, J. Power Sources, 199, 2012.

30 Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, 32, 751 – 767, (1976).

31 Takasu, Y., Sugino, T., Matsuda, Y.: Electrical conductivity of praseodymia doped ceria, J. Appl. Electrochem., 14, 79 – 81, (1984).

32 Nauer, M., Ftikos, C., Steele, B.C.H.: An evaluation of Ce-Pr oxides and Ce-Pr-Nb oxides mixed conductors for cathodes of solid oxide fuel cells: structure, thermal expansion and electrical conductivity, J. Eur. Ceram. Soc., 14, 493 – 499, (1994).

33 Ahn, K., Yoo, D.S., Prasad, D.H., Lee, H.-W., Chung, Y.-C., Lee, J.-H.: Role of multivalent pr in the formation and migration of oxygen vacancy in pr-doped Ceria: experimental and first-principles investigations, Chem. Mater., 24, 4261 – 4267, (2012).

34 Sadykov, V.A., Kuznetsova, T.G., Alikina, G.M., Frolova, Y.V., Lukashevich, A.I., Muzykantov, V.S., Rogov, V.A., Batuev, L.C., Kriventsov, V.V., Kochubei, D.I., Moroz, E.M., Zyuzin, D.A., Paukshtis, E.A., Burgina, E.B., Trukhan, S.N., Ivanov, V.P., Pinaeva, L.G., Ivanova, Y.A., Kostrovskii, V.G., Neophytides, S., Kemnitz, E., Scheurel, K., Mirodatos, C.: Ceria-based fluorite-like oxide solid solutions promoted by precious metals as catalysts of methane transformation into syngas. In: New Topics in Catalysis Research. Nova Science Publishers, New York, 2007.

35 Kim, J.J., Bishop, S.R., Thompson, N.J., Chen, D., Tuller, H.L.: Investigation of nonstoichiometry in oxide thin films by simultaneous in situ optical absorption and chemical capacitance measurements: Pr-doped ceria, a case study, Chem. Mater., 26, 1374 – 1379, (2014).

36 Aksenova, T.V., Petrov, A.N., Cherepanov, V.A., Gavrilova, L.Y.: The thermodynamic parameters of oxygen nonstoichiometry defects in lanthanum cobaltite doped with acceptor impurities (Sr and Ni), Russ. J. Phys. Chem., 80, 1215 – 1220, (2006).

37 Kiselev, E.A., Proskurnina, N.V., Cherepanov, V.A.: The oxygen nonstoichiometry, defect structure, and thermodynamic characteristics of disordering of nickel-and iron-substituted lanthanum cobaltites, Russ. J. Phys. Chem. A, 81, 1950 – 1955, (2007).

38 Islam, M.S.: Computer modelling of defects and transport in perovskite oxides, Solid State Ionics, 154, 75 – 85, (2002).

39 Shelepova, E., Vedyagin, A., Sadykov, V., Mezentseva, N., Fedorova, Y., Smorygo, O., Klenov, O., Mishakov, I.: Theoretical and experimental study of methane partial oxidation to syngas in catalytic membrane reactor with asymmetric oxygen-permeable membrane, Catal. Today, 268, 103 – 110, (2016).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH