Articles
All articles | Recent articles
Factors Affecting the Performance of Thermal Barrier Coatings in the Presence of V2O5 and Na2SO4
K.P. Jonnalagadda1, R. Eriksson1, R.L. Peng1, X.-H. Li2, S. Johansson1
1 IEI, Linköping University, 58183 Linköping, Sweden
2 Siemens Industrial Turbomachinery AB, SE-61283 Finspång, Sweden
received August 12, 2016, received in revised form November 10, 2016, accepted November 21, 2016
Vol. 7, No. 4, Pages 409-416 DOI: 10.4416/JCST2016-00058
Abstract
This study investigates the influence of temperature, salt concentration and thickness on the corrosion resistance of seven YSZ thermal barrier coatings in the presence of V2O5 and Na2SO4. For this study, a thick, high-porosity APS coating (670 µm) using hollow spherical powder (HOSP) and a thin, low-porosity APS coating (300 µm) using agglomerated and sintered (A&S) powder were fabricated. Corrosion tests were conducted at 750 °C and 900 °C with a mixture of Na2SO4 and V2O5 for four hours. At each temperature, salt concentrations of 4, 10 and 20 mg/cm2 were used. SEM and XRD investigations after the corrosion tests revealed that a combination of low temperature and high salt concentration resulted in higher corrosion-induced damage to the thin TBC coatings. With regard to the thick TBC coatings, all except one sample failed during the corrosion test. This suggests that thick TBC coatings with higher porosity may not be suitable in corrosive environments.
Download Full Article (PDF)
Keywords
HOSP, agglomerated and sintered YSZ, hot corrosion, TBC
References
1 Padture, N.P., Gell, M., Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications, Science., 296, 280 – 284, (2002).
2 Gleeson, B.: Thermal barrier coatings for aeroengine applications, J. Propul. Power., 22, 375 – 383, (2006).
3 DeMasi-Marcin, J.T., Gupta, D.K.: Protective coatings in the gas turbine engine, Surf. Coat. Tech., 68 – 69, 1 – 9, (1994).
4 Goward, G.W.: Progress in coatings for gas turbine airfoils, Surf. Coat. Tech., 108 – 109, 73 – 79, (1998).
5 Pomeroy, M.J.: Coatings for gas turbine materials and long term stability issues, Mater. Des., 26, 223 – 231, (2005).
6 Bose, S.: High temperature coatings. Butterworth-Heinemann., Oxford, 2007.
7 Habibi, M.H., Wang, L., Guo, S.M.: Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7 + YSZ composite thermal barrier coatings in Na2SO4 + V2O5 at 1050 °C, J. Eur. Ceram. Soc., 32, 1635 – 1642, (2012).
8 Abubakar, A.A., Akhtar, S.S., Arif, A.F.M.: Phase filed modelling of V2O5 hot corrosion kinetics in thermal barrier coatings, Comp. Mater. Sci., 99, 105 – 116, (2015).
9 Chen, Z., Speakman, S., Howe, J., Wang, H., Porter, W., Trice, R.: Investigation of reactions between vanadium oxide and plasma-sprayed yttria-stabilized zirconia coatings, J. Eur. Ceram. Soc., 29, 1403 – 1411, (2009).
10 Park, S.Y., Kim, J.H., Kim, M.C., Song, H.S., Park, C.G.: Microscopic observation of degradation behavior in yttria and ceria stabilized zirconia thermal barrier coatings under hot corrosion, Surf. Coat. Tech., 190, 357 – 365, (2005).
11 Jones, R.L.: Some aspects of the hot corrosion of thermal barrier coatings, J. Therm. Spray Techn., 6, 77 – 84, (1997).
12 Yugeswaran, S., Kobayashi, A., Ananthapadmanabhan, P.V.: Initial phase hot corrosion mechanism of gas tunnel type plasma sprayed thermal barrier coatings, Mater. Sci. Eng., B, 177, 536 – 542, (2012).
13 Jamali, H., Mozafarinia, R., Shoja-Razavi, R., Ahmadi-Pidani, R.: Comparison of hot corrosion behaviors of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings exposure to molten vanadium pentoxide and sodium sulphate, J. Eur. Ceram. Soc., 34, 485 – 492, (2014).
14 Saremi, M., Keyvani, A., Sohi, M.H.: Hot corrosion resistance and mechanical behavior of atmospheric plasma sprayed conventional and nanostructured zirconia coatings, Int. J. Mod. Phys. Conf. Ser., 05, 720 – 727, (2012).
15 Reed, R.C.: The superalloys. Cambridge University Press., Cambridge, 2006.
16 Belmonte, M.: Advanced ceramic materials for high temperature applications, Adv. Eng. Mater., 8, 693 – 703, (2006).
17 Ahmaniemi, S., Vippola, M., Vuoristo, P., Mäntylä, T., Cernuschi, F., Lutterotti, L.: Modified thick thermal barrier coatings: microstructural characterization, J. Eur. Ceram. Soc., 24, 2247 – 2258, (2004).
18 Davis, J.R.: Handbook of thermal spray technology. ASM International, Ohio, 2004.
19 Dorfman, M.R., Correa, L.F., Dambra, G., Laul, K., Schmid, R.K.: Method of producing a pre-alloyed stabilized zirconia powder. U.S. Patent Application 0,107,580, (2004).
20 Keyvani, A., Saremi, M., Sohi, M.H.: Microstructural stability of zirconia-alumina composite coatings during hot corrosion test at 1050 °C, J. Alloy. Compd., 506, 103 – 108, (2010).
21 Levin, E.M.: The system Y2O3-V2O5, J. Am. Ceram. Soc., 50, 381 – 382, (1967).
Copyright
Göller Verlag GmbH