Articles
All articles | Recent articles
Microwave Dielectric Properties of (1-x)CaTiO3-x(Na0.5Nd0.5)TiO3 Ceramics
A.E. Reda, D.M. Ibrahim, D.A. Abdel Aziz
Ceramic Department, National Research Centre, 12622, Dokki, Cairo, Egypt.
received December 8, 2015, received in revised form February 20, 2016, accepted March 8, 2016
Vol. 7, No. 3, Pages 243-248 DOI: 10.4416/JCST2015-00083
Abstract
The crystal structures, phase compositions and the microwave dielectric properties of (1-x)Ca2+TiO3 - x(Na1+0.5 Nd3+0.5)TiO3 ceramics prepared by the conventional solid state route have been investigated. The formation of solid solution is confirmed in XRD patterns. A specimen using 0.92Ca2+TiO3-0.08(Na1+0.5Nd3+0.5)TiO3 (x = 0.08) sintered at 1250 °C/2 h possesses an excellent combination of microwave dielectric properties, (εr) = 31.8, a maximum (Qxf) value of 2·104 at 5 GHz. This may be related to the increase in density as well as the grain morphology, which led to a reduction in the dielectric loss to a value of 0.25·10-3. It is proposed as a suitable candidate material for small-sized GPS patch antennas.
Download Full Article (PDF)
Keywords
Microwave, dielectric properties, calcium titanate, sodium neodymium titanate
References
1 Wakino, K., Nishikawa, T., Ishikawa, Y., Tamura, H.: Dielectric resonator materials and their applications for mobile communication systems, Brit. Ceram. Trans. J., 89, [2], 39 – 43, (1990).
2 Sai, L., Lingxia, L., Xiaosong, L., Hao, S., Jing, Y.: Microwave dielectric properties of ZnO-doped MgTiO3–(K0.5La0.5)TiO3 ceramic system, Mater. Lett., 161, 527 – 529, (2015).
3 Tianwen, Z., Ruzhong, Z., Chen, Z.: Preparation and microwave dielectric properties of Li3(Mg0.92Zn0.08)2NbO6-Ba3(VO4)2 composite ceramics for LTCC applications, Mater. Res. Bull., 68, 109 – 114, (2015).
4 Ezaki, K., Baba, Y., Takahashi, H., Shibata, K., Nakano, S.: Microwave dielectric properties of CaO-Li2O-Ln2O ceramics, Jpn. J. Appl. Phys., 32(9B), 4319 – 4322, (1993).
5 Takahashi, H., Baba, Y., Ezaki, K., Shibata, K.: Microwave dielectric properties and crystal structure of CaO-LiO-(1-x)Sm2O3-xLn2O3-TiO (Ln: lanthanide) ceramics system, Jpn. J. Appl. Phys., 35(9B), 5069 – 5073, (1996).
6 Yoon, K.H., Chang, Y.H., Kim, W.S., Kim, J.B., Kim, E.S.: Dielectric properties of Ca1-xSm2x/3TiO3-li ceramics, Jpn. J. Appl. Phys., 35(9B), 5145 – 5149, (1996).
7 Kim, J.S., Cheon, C., Kang, H.J., Lee, C.H., Yong, K., Nam, K.S., Byun, J.D.: Crystal structure and microwave dielectric properties of CaTiO3-(Li1/2Nd1/2)TiO3-(Ln1/3Nd1/3)TiO3 (Ln=La, Dy) ceramics, Jpn. J. Appl. Phys., 38(9B), 5633 – 5637, (1999).
8 Lowe, T., Azough, F., Freer, R.: The effect of Bi2Ti2O7 addition upon the microwave dielectric properties of 0.4 CaTiO3-0.6Li0.5Nd 0.5TiO3, J. Eur. Ceram. Soc., 23, 2429 – 2434, (2003).
9 Takahashi, H., Baba, Y., Ezaki, K., Okamoto, Y., Shibata, K., Kuroki, K., Nakano, S.: Dielectric characteristics of ceramics at microwave frequencies, Jpn. J. Appl. Phys., 30, 2339 – 2342, (1991).
10 Liang, B.L., Zheng, X.H., Tang, D.P.: New high-ε and high-Q microwave dielectric ceramics: (1-x)Ca0.61Nd0.26TiO3-xNd(Zn0.5Ti0.5)O3, J. Alloy. Compd., 488, 409 – 413, (2009).
11 Shen, C.H., Huang, C.L., Shih, C.F., Huang, C.M.: A novel temperature-compensated microwave dielectric (1-x)(Mg0.95 Ni0.05)TiO3 -xCa0.6La0.8/3TiO3 ceramics system, Int. J. Appl. Ceram. Tec., 6, [5], 562 – 570, (2009).
12 Wheless, W.P., Kajfez, D.: Experimental characterization of multimode microwave resonator using automated network analyzer, IEEE T, Microw. Theory, MTT-35, 12, 1263 – 1270, (1987).
13 Huang, C.L., Chen, Y.B., Tasi, C.F.: Influence of B2O3 additions to 0.8(Mg0.95Zn0.05)TiO3-0.2Ca0.61Nd0.26TiO3ceramics on sintering behavior and microwave dielectric properties, J. Alloy Compd., 460, 675 – 679, (2008).
14 Dash, M.S.: Synthesis and electrical characterization of lanthanum doped barium titanate zirconate, National Institute of Technology, Rourkela-769008, India, 3 (2009).
15 Chen, Z., Xinyou, H., Hao, G., Chunhua, G.: Effect of Y2O3 & Dy2O3 on dielectric properties of Ba0.7Sr0.3TiO3 series capacitor ceramics, J. Rare Earth, 25, 197 – 200, (2007).
16 Reda, A.E., Ibrahim, D.M.M., Souya, E.R., Abdel Aziz, D.A.: Characterization and microwave dielectric properties of calcium titanate-sodium lanthanum titanate ceramics, J. Appl. Sci. Res., 9, [1], 541 – 547, (2013).
17 Shannon, R.D.: Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys., 73, [1], 348 – 366, (1993).
18 Fratello, V.J., Brandle, C.D.: Calculation of dielectric polarizabilities of perovskite substrate materials for high-temperature superconductors, J. Mater. Res., 9, [10], 2554 – 2560, (1994).
19 Hu, M., Luo, C., Tian, H., Gu, H.: Phase evolution, crystal structure and dielectric behavior of (1-x)Nd(Zn0.5Ti0.5)O3 + xBi(Zn0.5Ti0.5)O3 compound ceramics, 509, 2993 – 2999, (2011).
20 Shen, C.H., Huang, C.L., Lin, L.M., Pan, C.L.: Characterization and dielectric behavior of B2O3-doped 0.9Mg0.95Co0.05 TiO3-0.1Ca0.6La0.8/3TiO3 ceramic system at microwave frequency, J. Alloy. Compd., 504, 228 – 232, (2010).
21 Silverman, B.D.: Microwave absorption in cubic strontium titanate, Phys. Rev., 125, [6] 1921 – 1930, (1962).
Copyright
Göller Verlag GmbH