• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Carbon-Bonded Alumina Refractories with Reduced Carbon Content due to the Addition of Semi-Conductive Silicon and/or Nanoparticles

N. Brachhold1, J. Fruhstorfer1, A. Mertke2, C.G. Aneziris1

1 TU Bergakademie Freiberg, Institute of Ceramic, Glass and Construction Materials, Agricolastr. 17, D-09599 Freiberg
2 Salzgitter Mannesmann Forschung GmbH, Eisenhüttenstrasse 99, D-38239 Salzgitter

received March 15, 2016, received in revised form May 1, 2016, accepted May 3, 2016

Vol. 7, No. 2, Pages 209-222   DOI: 10.4416/JCST2016-00024

Abstract

This study investigated the combined effect of nanoscaled additives (carbon nanotubes and nanoscaled alumina) and semi-conductive silicon on carbon-bonded alumina with a reduced primary carbon content of 20 wt%. It focused on the initial cold modulus of rupture and its evolution on exposure to thermal shock. The use of the single additive groups or their combination yielded an increased initial strength compared to the reference without additives. It was shown that the combination of the additives resulted in a material that exhibited no statistically significant decrease of the cold modulus of rupture in up to five thermal shock cycles. To understand these effects, physical properties (total porosity, open porosity, true density) were observed. The data showed that the microstructural reactions were complex. The combination of all additives caused a decrease in the open porosity. The available data of the true density analysis matched partly with the possible reactions. Especially the formation of SiC whiskers was considered to be important during the coking process and the thermal shocks. Furthermore, it was proposed that a deposition of carbon because of oxidation processes followed by reactions with the additives, especially the semi-conductive silicon, occurred, which might have a self-healing effect on the refractory matrix.

Download Full Article (PDF)

Keywords

Nanoscaled additives, silicon, carbon-bonded alumina, semi-conductive material, reduced graphite

References

1 Salmang, H., Scholze, H., Telle, R.: Ceramics, in German, 7th Edition, Springer-Verlag, Berlin, Heidelberg, 2007.

2 Pierson, H.O: Handbook of carbon, graphite, diamond and fullerenes – properties, processing and applications, Noyes Publications, Park Ridge, New Jersey, 1993.

3 Krüger, A.: New carbon materials – an introduction, in German, 1st edition. B.G. Teubner Verlag, Wiesbaden, 2007.

4 Roungos, V., Aneziris, C.G.: Improved thermal shock performance of Al2O3-C refractories due to nanoscaled additives, Ceram. Int., 38, [2], 919 – 92, (2012).

5 Gardziella, A.: Chemistry and physics of duroplastic resins in plastics handbook vol. 10 duroplastics, in German, Editors: Becker, G.W., Braun, D., Woebcken, W., Carl HanserVerlag, Munich, Vienna, 1988.

6 Lewis, I.C.: Chemistry of carbonization, carbon, 20 [6], 519 – 529, (1982).

7 Guan, G., Kusakabe, K., Ozono, H., Taneda, M., Uehara, M., Maeda, H.: Preparation of carbon microparticle assemblies from phenolic resin using an inverse opal templating method, J.Mater. Sci., 42, [24], 10196 – 10202, (2007).

8 Bundes-Immissionsschutzgesetz BImSchG: Mit Durchführungsverordnungen, Emissionshandelsrecht, TA Luft und TA Lärm [Germany's Federal Ambient Pollution Control Act]. 10th edition, Deutscher Taschenbuch Verlag, 2010.

9 Kyoto Protocol, Third International Conference of the Parties Kyoto, Japan, December 11, 1997.

10 Buhr, A.: Trends in clean steel technology and refractory engineering, Plenary Speech, 14th Unified International Technical Conference on Refractories – UNITECR 2015, 15.-18.09.15, Vienna

11 Khezrabadi, M.N., Javadpour, J., Rezaie, H.R., Naghizadeh, R.: The effect of additives on the properties and microstructures of Al2O3-C refractories, J. Mater. Sci., 41, [10], 3027 – 3032, (2006).

12 Yamaguchi, A.: Self-repairing function in the carbon-containing refractory, Int. J. Appl. Ceram. Tec., 4, [6], 490 – 495, (2007).

13 Sunayama, H., Kawahara, M., Mitsuo, T., Sumitomo, K.: The effect of B4C addition on the oxidation resistance of Al2O3-C and Al2O3-SiC-C refractories, Proceedings of the Unified International Technical Conference on Refractories, 1997.

14 Zhang, S., Yamaguchi, A.: A comparison of Al, Si and Al4SiC4 added to Al2O3-C refractories, Proceedings of the Unified International Technical Conference on Refractories. New Orleans, USA, 1997.

15 Vieira Jr., W., Rand, B.: The nature of the bond in silicon-containing alumina-carbon refractory composites – Part I, Proceedings of the Unified International Technical Conference on Refractories. New Orleans, USA, 1997.

16 Zhang, S.: Next generation carbon-containing refractory composites, Adv. Sci. Tech, 45, 2246 – 2253, (2006).

17 Luhrsen, E., Ott, A.: Immersion nozzles for metal melts. U.S. Patent 5, 171, 495, 15, 1992.

18 Wang, T., Yamaguchi, A.: Antioxidation behavior and effect of Al8B4C7 added to carbon-containing refractories, J. Ceram. Soc. Jpn., 108, [9], 818 – 822, (2000).

19 Roungos, V., Aneziris, C.G., Berek, H.: Novel Al2O3-C refractories with less residual carbon due to nanoscaled additives for continuous steel casting applications, Adv. Eng. Mater., 14, [4], 255 – 264, (2012).

20 Yamaguchi, A., Zhang, S., Yu, J.: Effect of refractory oxides on the oxidation of graphite and amorphous carbon, J. Am. Ceram. Soc., 79, [9], 2509 – 2511, (1996).

21 Aneziris, C.G., Hubálková, J., Barabás, R.: Microstructure evaluation of MgO-C refractories with TiO2- and Al-additions, J. Eur. Ceram. Soc., 27, [1], 73 – 78, (2007).

22 Stein, V.: Contribution to the characteristic improvement of carbon bonded doloma refractories by addition of functional ceramic materials, Freiberger Forschungsheft, Reihe A, 905, (2011).

23 Stein, V., Aneziris, C.G., Guéguen, E., Hill, K.: A prospective way to reduce emissions in secondary steel making metallurgy by application of functionalized doloma carbon refractories, Int. J. Appl. Ceram. Tec., 9, [3], 615 – 624, (2012).

24 Stein, V., Aneziris, C.G.: Low-carbon carbon bonded alumina refractories for functional components in steel technology, J. Ceram. Sci. Tech., 5, [2],115 – 124, (2014).

25 Mertke, A., Aneziris, C.G.: The influence of nanoparticles and functional metallic additions on the thermal shock resistance of carbon bonded alumina refractories, Ceram. Int., 41, [1], 1541 – 1552, (2015).

26 Kunz, G.: Ladle refractories for clean steel production, RHI Bull., 2, 30 – 40, (2010).

27 Fruhstorfer, J., Schafföner, S., Werner, J., Wetzig, T., Schöttler, L., Aneziris, C.G., Thermal schock performance of refractories for application in steel ingot casting, J. Ceram. Sci. Tech., DOI: 10.4416/JCST2016 – 00010, (2016).

28 Montgomery, D.C., Runger, G.C., Hubele, N.F.: Engineering statistics, 4th Edition, Hoboken, NJ: Wiley, 2007.

29 Lautenschläger, K.-H.; Schröter, W., Wanninger, A.: Pocket book of chemistry, in German, 20., revised and extended addition, reprint, Frankfurt am Main, 2007

30 Tang, C.C., Fan, S.S., Dang, H.Y., Zhao, C., Zhang, P., Li, P., Gu, Q.: Growth of SiC nanorods prepared by carbon nanotubes-confined reaction, J. Cryst. Growth, 210, [4], 595 – 599, (2000).

31 Wu, Y.J., Wu, J.S., Qin, W., Xu, D., Yang, Z.X., Zhang, Y.F., Synthesis of β-SiC nanowhiskers by high temperature evaporation of solid reactants, Mater. Lett., 58, [17 – 18], 2295 – 2298, (2004).

32 Fan, H., Li, Y., Sang, S., Microstructures and mechanical properties of Al2O3-C refractories with silicon additive using different carbon sources, Mat. Sci. Eng. A, 528, [7 – 8] 3177 – 3185, (2011).

33 Tran, H.K., Sawko, P.M.: Thermal degradation study of silicon carbide threads developed for advanced flexible thermal protection systems, NASA Technical Memorandum 103952, 1992

34 Fruhstorfer, J., Möhmel, S., Thalheim, M., Schmidt, G., Aneziris, C.G.: Microstructure and strength of fused high alumina materials with 2.5 wt% zirconia and 2.5 wt% titania additions for refractory applications, Ceram. Int., 41, [9], 10644 – 10653, (2015).

35 Werner, J., Aneziris, C.G., Dudczig, S.: Young's modulus of elasticity of carbon-bonded alumina materials up to 1450°C, J. Am. Ceram. Soc., 96, [9], 2958 – 2965, (2013).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH