Articles
All articles | Recent articles
A Study on the Polymer Precursor Formation and Microstructure Evolution of Square-Shaped (La0.5Ba0.5)(Mn0.5Fe0.5)O3 Ceramic Nanoparticles
M. Romero1,2, H. Pardo1,2, R. Faccio1,2, L. Suescun1,2, S. Vázquez1, I. Laborda1, L. Fernández-Werner1,2, Á. Acosta3, J. Castiglioni4, Á.W. Mombrú1,2
1 Cryssmat-Lab/Centro NanoMat – DETEMA – Facultad de Química – Universidad de la República – P.O. Box 1157, Montevideo, URUGUAY.
2 Centro Interdisciplinario de Nanotecnología, Química y Física de Materiales – Espacio Interdisciplinario – Universidad de la República – P.O. Box 1157, Montevideo, URUGUAY.
3 Cátedra de Química Inorgánica, DEC, Facultad de Química, Universidad de la República – P.O. Box 1157, Montevideo, URUGUAY.
4 Cátedra de Fisicoquímica, DETEMA, Facultad de Química, Universidad de la República – P.O. Box 1157, Montevideo, URUGUAY.
received January 23, 2015, received in revised form March 1, 2015, accepted March 10, 2015
Vol. 6, No. 3, Pages 221-230 DOI: 10.4416/JCST2015-00005
Abstract
The polymer precursor formation and the growth mechanism of (La0.5Ba0.5)(Mn0.5Fe0.5)O3 ceramic nanoparticles have been studied. First, we focused on the influence of isolated metals (La, Ba, Mn, Fe) on the polymer precursor formation by means of Raman, FT-IR, scanning electron microscopy and differential scanning calorimetry, showing that the presence of metal ions, especially iron, increases the oxidation rate of the polymer precursor, while the presence of barium leads to a higher degree of polymerization, preventing partial oxidation of the polymer at low temperatures and allowing the presence of nitrates at the combustion stage. Nevertheless, when all metals are present, the polymer precursor showed a largely homogeneous microstructure with a global average influence from all cations.
Finally, we studied the microstructure evolution of nanoparticles obtained after calcination above 700 °C. SAXS and TEM analysis suggests that the formation of square-shaped nanoparticles below 900 °C and coalescence leads to the formation of larger-sized and round-shaped nanoparticles at 900 °C.
Download Full Article (PDF)
Keywords
SAXS, perovskite, nanoparticle, sol-gel, polymer precursor.
References
1 Cardoso, C.A., Araújo Moreira, F.M., Andreeta, M., Hernandes, A.C., Leite, E.R., De Lima, O.F., Mombrú, A.W., Faccio, R.: Physical properties of single-crystalline fibers of the colossal magnetoresistance manganite La0.7Ca0.3MnO3, Appl. Phys. Lett., 83, 3135 – 3137, (2003).
2 Lisboa Filho, P.N., Mombrú, A.W., Pardo, H., Ortiz, W.A., Leite, E.R.: Extrinsic properties of colossal magnetoresistance samples, Solid State Commun., 130, 31 – 36, (2004).
3 Lisboa Filho, P.N., Mombrú, A.W., Pardo, H., Ortiz, W.A., Leite, E.R.: Influence of processing conditions on the crystal structure and magnetic behavior of La0.7Ca0.3MnO3 samples, J. Phys. Chem. Solids, 64, 583 – 591, (2003).
4 Pardo, H., Ortiz, W.A., Araújo-Moreira, F.M., Suescun, L., Toby, B.H., Quagliata, E., Negreira, C.A., Prassides, K., Mombrú, A.W.: A new structure in the REBaCuFeO5+d series: LaBaCuFeO5+d. structure and magnetic properties in the La1-xPrxBaCuFeO5+d system, Physica C, 313, 105 – 114, (1999).
5 Mombrú, A.W., Pardo, H., Suescun, L., Toby, B.H., Ortiz, W.A., Negreira, C.A., Araújo-Moreira, F.M.: Influence of oxygen disorder on the magnetic properties of LaBaCuFeO5+d: An EXAFS and nêutron diffraction study, Physica C, 356, 149 – 159, (2001).
6 Mombrú, A.W., Goeta, A.E., Pardo, H., Lisboa Filho, P.N., Suescun, L., Mariezcurrena, R.A., Ventura, O.N., Behak, R., Anderson, K.H., Araújo-Moreira, F.M.: Low-temperature magnetic properties of LuBaCuFeO5+d and TmBaCuFeO5+d, J. Solid State Chem. 166, 251 – 258, (2002).
7 Pai, M.R., Wani, B.N., Sreedhar, B., Singh, S., Gupta, N.M.: Catalytic and redox properties of nano-sized La0.8Sr0.2Mn1-xFexO3-d mixed oxides, J,Mol. Catal. A-Chem.l, 246,128 – 135, (2006).
8 Shuang, Z., Shao-Yu, M., Zhao-Xiong, X., Lan-Sun, Z.: Preparation and gas sensing properties of Fe-doped yttrium manganate nanoparticles, Sensor. Actuat. B-Chem., 156, 23 – 27, (2011).
9 Bonet, A., Travitzky, N., Greil, P.: Synthesis of LaCrO3 and La0.9Ca0.1CrO3 by modified glycine nitrate process, J. Ceram. Sci. Tech., 5, 93 – 100, (2014).
10 [Pawar, M.J., Chaure, S.S., Deshmukh, S.B.: Effect of co co-doping on the electrical conductivity of Ce0.9Sm0.1O2-δ, J. Ceram. Sci. Tech., 1, 27 – 31, (2010).
11 Romero, M., Faccio, R., Martínez, J., Pardo, H., Montenegro B., Plá Cid, C.C., Pasa, A.A., Mombrú, A.W.: Effect of lanthanide on the microstructure and structure of LnMn0.5Fe0.5O3 nanoparticles with Ln=La, pr, nd, sm and gd prepared by the polymer precursor method, J. Solid State Chem., 221, 325 – 333, (2015).
12 Pechini, M.P.: US Patent, 3, 330 – 697, (1967).
13 Kakihana, M., Arima, M., Nakamura, Y., Yashima, M., Yoshimura, M.: Spectroscopic Characterization of Precursors Used in the Pechini-Type Polymerizable Complex Processing of Barium Titanate, Chem. Mater., 11, 438 – 450, (1999).
14 Karen, P., Kjekshus, A.: Citrate-gel synthesis in the Y(O)-Ba(O)-Cu(O) system, J. Am. Ceram. Soc., 77, 547 – 552, (1994).
15 Kakihana, M., Milanova, M.M., Arima, M., Okubo, T., Yashima, M., Yoshimura, M.: Polymerized complex route to the synthesis of pure Y2Ti2O7 at 750 C using Y:Ti mixed-metal citric acid complex, J. Am. Ceram. Soc., 79, 1673 – 1676, (1996).
16 Ekstrom, L., Olin, A.: On the complex formation between lead (II) and citrate íons in acid, neutral and weakly alkaline solution, Chem. Scripta, 13, 10 – 15, (1978).
17 Todorovsky, D., Getsova, M., Vasileva, M.A.: Thermal decomposition of lanthanumtitanium citric complexes prepared from ethylene glycol medium, J. Mater. Sci., 37, 4029 – 4039, (2002).
18 Mazaki, H., Yasuoka, H., Kakihana, M., Fujimori, H., Yashima, M., Yoshimura, M.: Complex susceptibilities of Co-substituted YBa2Cu3O7-d synthesized by the polymerixed complex method, Physica C, 246, 37 – 45, (1995).
19 Ertl, G., Knözinger, H., Weitkamp, J.: Preparation of solid catalysts, John Wiley & Sons, New York, 1992.
20 Sinquin, G., Petit, C., Hindermann, J.P., Kiennemann, A.: Study of the formation of LaMO3 (M=Co, Mn) perovskites by propionates precursors: Application to the catalytic destruction of chlorinated VOCs, Catal. Today, 70, 183, (2001).
21 Arima, M., Kakihana, M., Nakamura, Y., Yashima, M., Yoshimura, J.: Polymerized complex route to barium titanate powders using barium-titanium mixed-metal citric acid complex, J. Am. Ceram. Soc., 79, 2847 – 2856 (1996).
22 Hennings, D., Mayer, W.: Thermal decomposition of (BaTi) citrate into barium titanate, J. Solid State Chem., 26, 329 – 338, (1978).
23 Kumar, S., Messing, G.L., White, W.B.: Metal organic resin derived barium titanate. I, formation of barium titanium oxycarbonate intermediate, J. Am. Ceram. Soc., 76, 617 – 624, (1993).
24 Duran, P., Capel, F., Tartaj, J., Gutierrez, D., Moure, C.: Heating-rate effect on the BaTiO3 formation by thermal decomposition of metal citrate polymeric precursors, Solid State Ionics, 141, 529 – 539, (2001).
25 Nakamoto, K.: Infrared and raman spectra of inorganic coordination compounds, John Wiley & Sons, New York, 2009.
26 Liang, L., Xu, Y., Hou, X., Wu, D., Sun, Y., Li, Z., Wu, Z.: Small-angle x-ray scattering study on the microstructure evolution of zirconia nanoparticles during calcination, J. Solid State Chem., 179, 959 – 967, (2006).
27 Guo, X., Gutsche, A., Wagner, M., Seipenbusch, M., Nirschl, H.: Simultaneous SWAXS study of metallic and oxide nanostructured particles, J. Nanopart. Res., 15, 1559, (2013).
28 Pabisch, S., Feichtenschlager, B., Kickelbick, G., Peterlik, H.: Effect of interparticle interactions on size determination of zirconia and silica based systems – A comparison of SAXS, DLS, BET, XRD and TEM, Chem. Phys. Letters, 521, 91 – 97, (2012).
29 Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects, Phys. Rev. A., 140, 1133, (1965).
30 Hohenberg, P., Kohn, W.: Inhomogeneous electron gas, Phys. Rev. B., 136, 864, (1964).
31 Parr, R.G., Yang, W.: Density-functional theory of atoms and molecules, Oxford University Press, 1989.
32 Becke, A.D.: A new mixing of hartree-fock and local density-functional theories, J. Chem. Phys., 98, 5648, (1993).
33 Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B., 46, 6671, (1992).
34 Hay, P.J., Wadt, W.R.: Ab initio effective core potentials for molecular calculations, J. Chem. Phys., 82, 270 – 283, (1985).
35 Frisch, M.J. et al.: Gaussian, Inc., Wallingford CT, 2009.
36 Hammouda, B.: A new Guinier-Porod model, J. Appl. Cryst., 43, 716 – 719, (2010).
37 Oliver, B.G., Davis, A.R.: Vibrational spectroscopic studies of aqueous alkali metal bicarbonate and carbonate solutions, J. Inorg. Nucl. Chem., 34, 2851 – 286, (1972).
38 Kumar, S.: Raman study of ferric perchlorate and nitrate in acidic solutions, J. Inorg. Nucl. Chem., 35, 3831 – 3836, (1973).
39 Hernández, M.T., González, M.: Synthesis of resins as alpha-alumina precursors by the pechini method using microwave and infrared heating, J. Eur. Ceram. Soc., 22, 2861 – 2868, (2002).
40 Xu, Y., Yuan, X., Huang, G., Long, H.: Polymeric precursor synthesis of Ba2Ti9O20, Mater. Chem. Phys., 90, 333 – 338, (2005).
41 Petrova, N., Todorovsky, D.: Thermal decomposition of zirconium-yttrium citric complexes prepared in ethylene glycol and water media, Mater. Res. Bull., 41, 576 – 589, (2006).
42 Vivekanandhan, S., Venkateswarlu, M., Satyanarayana, N.: Effect of ethylene glycol on polyacrylic acid based combustion process for the synthesis of nano-crystalline nickel ferrite (NiFe2O4), Mater. Lett., 58, 2717 – 2720, (2004).
43 Pontes, F.M., Galhiane, M.S., Santos, L.S., Petit, L.A., Kataoka, F.P., Mabuchi, G.H., Longo, E., Zampieri, M., Pizani, P.S.: Polymeric precursor method to the synthesis of XWO(4) (X = Ca and Sr) thin films-structural, microstructural and spectroscopic investigations, J.Alloy. Compd., 477, 608 – 615, (2009).
44 Farhikhteh, S., Maghsoudipour, A., Raissi, B.: Synthesis of nanocrystalline YSZ (ZrO2-8Y2O3) powder by polymerized complex method, J. Alloy. Compd., 491, 402 – 405, (2010).
45 Yang, W., Chang, Y., Huang, S.: Influence of molar ratio of citric acid to metal ions on preparation of La0.67Sr0.33MnO3 materials via polymerizable complex process, J. Eur. Ceram. Soc., 25, 3611 – 3618, (2005).
46 Wang, S., An, Y., Zhang, C., Zhang, Z., Qian, Y.: Ethanothermal reduction to MoO2 microspheres via modified pechini method, J. Cryst. Growth, 293, 209, (2006).
47 Nishizawa, H., Katsube, M.: Preparation of BaTiO3Thin films using glycolate precursor, J. Solid State Chem. 131, 43 – 48, (1997).
48 Rossiter, W.J., Godette, M., Brown, P.W., Galuk, K.G.: Investigation of the degradation of aqueous ethylene glycol and propylene glycol solutions using ion chromatography, Sol. Mater., 11, 455 – 467, (1985).
49 Rosário, A.V., Pereira, E.C.: The effect of composition variables on precursor degradation and their consequence on Nb2O5 film properties prepared by the pecchini method, J. Sol-Gel Sci. Technol., 38, 233 – 240, (2006).
50 Barton, D.H.R., Ollis, W.D.: Comprehensive organic chemistry: the synthesis and reactions of organic compounds, Oxford, Pergamon Press, 1979.
Copyright
Göller Verlag GmbH