Articles
All articles | Recent articles
Additive Manufacturing of Metal-Ceramic-Composites by Thermoplastic 3D-Printing (3DTP)
U. Scheithauer, T. Slawik, E. Schwarzer , H.-J. Richter, T. Moritz, A. Michaelis
Fraunhofer Institute for Ceramic Technologies and Systems (IKTS) Dresden, Germany
received October 16, 2014, received in revised form December 8, 2014, accepted January 23, 2015
Vol. 6, No. 2, Pages 125-132 DOI: 10.4416/JCST2014-00045
Abstract
In our new approach – thermoplastic 3D printing (3DTP) – high-filled ceramic and metal feedstocks based on thermoplastic binder systems were used to produce metal-ceramic-composites by means of additive manufacturing (AM). The developed AM method has some outstanding advantages compared to other methods. First, the portfolio of applicable materials is not limited. Second, it works almost independently of the properties of the dispersed material. The application of thermoplastic 3D printing with two components is in principle demonstrated with stainless-steel-zirconia composites. Different feedstocks with high powder content up to 50 vol% were prepared. The main challenge was the adjustment of the shrinkage behavior for the different materials, which could be achieved by high-energy milling and the adjustment of the powder content within the metal feedstock. The adapted additive manufacturing method of thermoplastic 3D printing (3DTP) offers new prospects for the fabrication of multi-material components. This AM method will be applicable not only for steel-zirconia composites but also for any other combinations of materials that can be processed to a paraffin-based thermoplastic feedstock and co-sintered.
Download Full Article (PDF)
Keywords
Additive manufacturing, metal-ceramic, thermoplastic, shrinkage, co-sintering
References
1 ASTM-Standard F2792 – 12a: Standard terminology for additive manufacturing technologies. March 1, 2012, ASTM International Distributed under ASTM license by Beuth publisher.
2 Lakshminarayan, U., Ogrydiziak, S., Marcus, H.L.: Selective laser sintering of ceramic materials, Proceedings of Solid Free-Form Symposium, 16 – 26, (1990).
3 Lauder, A., Cima, M.J., Sachs, E., Fan, T.: Three-dimensional printing: surface finish and microstructure of rapid prototyped components, Mater. Res. Soc. Symp. P., 249, 331 – 336, (1992).
4 Chartier, T., Badev, A.: Rapid prototyping of ceramics. In: Handbook of Advanced Ceramics Elsevier, Oxford, UK, 2013.
5 Travitzky, N., Bonet, A., Dermeik, B., Fey, T., Filbert-Demut, I., Schlier, L-, Schlordt, T., Greil, P.: Additive manufacturing of ceramic-based materials, Adv. Eng. Mater., 16, 729 – 754, (2014).
6 Pham-Gia, K., Rossner, W., Wessler, B., Schäfer, M., Schwarz, M.: Rapid prototyping of high-density alumina ceramics using stereolithography, cfi/Ber. DKG, 83, 36 – 40, (2006).
7 Chartier, T., Duterte, C., Delhote, N., Baillargeat, D., Verdeyme, S., Delage, C., Chaput, C.J.: Fabrication of millimeter wave components via ceramic stereo- and microstereolithography processes, J. Am. Ceram. Soc., 91, 2469 – 2474, (2008).
8 Griffith, M.L., Halloran, J. W.: Freeform fabrication of ceramics via stereolithography, J. Am. Ceram. Soc., 79, 2601 – 2608, (1996).
9 Licciulli, A., Corcione, C.E., Greco, A., Amicarelli, V., Maffezzoli, A.: Laser stereolithography of ZrO2 toughened Al2O3, J. Eur. Ceram. Soc., 25, 1581 – 1589, (2005).
10 de Hazan, Y., Thänert, M., Trunec, M., Misak, J.: Robotic deposition of 3d nanocomposite and ceramic fiber architectures via UV curable colloidal inks, J. Eur. Ceram. Soc., 32, 1187 – 1198, (2012).
11 Felzmann, R., Gruber, S., Mitteramskogler, G., Tesavibul, P., Boccaccini, A.R., Liska, R., Stampfl, J.: Lithography-based additive manufacturing of cellular ceramic structures, Adv. Eng. Mater., 14, 1052 – 1058, (2012).
12 Lenk, R., Nagy, A., Richter, H.-J., Techel, A.: Material development for laser sintering of silicon carbide, cfi/Ber. DKG, 83, 41 – 43, (2006).
13 Regenfuss, P., Ebert, R., Exner, H.: Laser micro sintering - a versatile instrument for the generation of microparts, Laser Technik Journal, 4, 26 – 31, (2007).
14 Hagedorn, Y.-C., Wilkes, J., Meiners, W., Wissenbach, K., Poprawe. R.: Net shaped high performance oxide ceramic parts by selective laser melting, Phys. Proced., 5, 587 – 594, (2010).
15 Wu, Y., Du, J., Choy, K.-L., Hench, L.L.: Laser densification of alumina powder beds generated using aerosol spray deposition, J. Eur. Ceram. Soc., 27, 4727 – 4735, (2007).
16 Goodridge, R.D., Lorrison, J.C., Dalgarno, K.W., Wood, D.J.: Comparison of direct and indirect selective laser sintering of porous apatite mullite glass ceramics, Glass Technol., 45, 94 – 96, (2004).
17 Gbureck, U., Hoelzel, T., Biermann, I., Barralet, J., Grover, L.M.: Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping, J. Mater. Sci.: Mater. M., 19, 1559 – 1563, (2008).
18 Seitz, H., Rieder, W., Irsen, S., Leukers, B., Tille, C.: Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering, J. Biomed. Mater. Res. B,, 74B, 782 – 788, (2005).
19 Khalyfa, A., Meyer, W., Schnabelrauch, M., Vogt, S., Richter, H.-J.: Manufacturing of biocompatible ceramic bone substitutes by 3D-printing, cfi/Ber. DKG, 83, 23 – 26, (2006).
20 Deisinger, U., Irlinger, F., Pelzer, R., Ziegler, G.: 3D-printing of HA-scaffolds for the application as bone substitute material, cfi/Ber. DKG, 83, 75 – 78, (2006).
21 Dombrowski, F., Caso, P.W.G., Laschke, M.W., Klein, M., Guenster, J., Berger, G.: 3-D printed bioactive bone replacement scaffolds of alkaline substituted ortho-phosphates containing meta- and di-phosphates, Key Eng. Mat., 529 – 530, 138 – 142, (2013).
22 Zocca, A, Gomes, C.M., Bernardo, E., Müller, R., Günster, J., Colombo, P.: LAS glass-ceramic scaffolds by three-dimensional printing, J. Eur. Ceram. Soc., 33, 1525 – 1533, (2013).
23 Sadeghian, Z., Heinrich, J.G., Moztarzadeh, F.: Direct laser sintering of hydroxyapatite implants by layerwise slurry deposition (LSD), cfi/Ber. DKG, 82, E1 – E5, (2004).
24 Cappi, B., Oezkol, E., Ebert, J., Telle, R.: Direct inkjet printing of Si3N4: characterization of ink, green bodies, and microstructure, J. Eur. Ceram. Soc., 28, 2625 – 2628, (2008).
25 Ebert, J., Özkol, E., Zeichner, A., Uibel, K., Weiss, Ö., Koops, U., Telle, R., Fischer, H.: Direct inkjet printing of dental prostheses made of zirconia, J. Dent. Res., 88, 673 – 676, (2009).
26 Allahverdi, M., Danforth, S.C., Jafari. M., Safari, A.: Processing of advanced electroceramic components by fused deposition technique, J. Eur. Ceram. Soc., 21, 1485 – 1490, (2001).
27 Bose, S., Darsell, J., Hosick, H., Yang, L., Sarkar, D.K., Bandyopadhyay, A.: Processing and characterization of porous alumina scaffolds, J. Mater. Sci.: Mater. M., 13, 23 – 28, (2002).
28 Schlordt, T., Schwanke, S., Keppner, F., Fey, T., Travitzky, N., Greil. P.: Robocasting of alumina hollow filament lattice structures, J. Eur. Ceram. Soc., 33, 3243 – 3248, (2013).
29 Cai, K., Roman-Manso, B., Smay, J.E., Zhou, J., Osendi, M.I., Belmonte, M., Miranzo, P.: Geometrically complex silicon carbide structures fabricated by robocasting, J. Am. Ceram. Soc., 95, 2660 – 2666, (2012).
30 Polsakiewicz, D., Kollenberg, W.: Process and materials development for functionalized printing in three dimensions (FP-3D), Refractories WORLDFORUM, 4, 1 – 8, (2012).
31 Cetinel, F.A., Bauer, W., Mueller, M., Knitter. R., Hausselt, J.: Influence of dispersant, storage time and temperature on the rheological properties of zirconia-paraffin feedstocks for LPIM, J. Eur. Ceram. Soc., 30, 1391 – 1400, (2010).
32 Gorjan, L., Dakskobler, A., Kosmac, T.: Strength evolution of injection-molded ceramic parts during wick-debinding, J. Am. Ceram. Soc., 95, 188 – 193, (2012).
33 Scheithauer, U., Schwarzer, E., Richter, H.-J., Moritz, T.: Thermoplastic 3D Printing —An Additive Manufacturing Method for Producing Dense Ceramics, JACT, 1 – 6, (2014).
34 Scheithauer, U., Bergner, A., Schwarzer, E., Richter, H.-J., Moritz, T.: Studies on thermo-plastic 3D printing of steel-zirconia composites, J. Mat. Res., 29, [17], 1931 – 1940, (2014).
35 Lee, H.C., Potapova, Y., Lee, D.: A core-shell structured, metal-ceramic composite-supported ru catalyst for methane steam reforming, J. Power Sources, 216, 256 – 260, (2012).
36 Molin, S., Tolczyk, M., Gazda, M., Jasinski, P.: Stainless steel/yttria stabilized zirconia composite supported solid oxide fuel cell, J. Fuel Cell Sci. Technol., 8, 051019 – 1 – 051019 – 5, (2011).
37 Roberts, H.W., Berzins, D.W., Moore, B.K., Charlton, D.G.: Metal-ceramic alloys in Dentistry: A review, J. Prosthodont., 18, [2], 188 – 194, (2009).
38 Largiller, G., Bouvard, D., Carry, C.P., Gabriel, A., Müller, J., Staab, C.: Deformation and cracking during sintering of bimaterial components processed from ceramic and metal powder mixes. part I: experimental investigation, Mech. Mater., 53, 123 – 131, (2012).
39 Guillon, O., Bordia, R.K., Martin, C.L.: Sintering of thin films/constrained sintering. In: Sintering of advanced materials (ed. Fang, Z. Z.), Woodhead Publishing, 2010.
40 Yeo, J., Jung, Y., Choi, S.: Zirconia-stainless steel functionally graded material by tape casting, J. Eur. Ceram. Soc., 18, 1281 – 1285, (1998).
41 Dourandish, M., Simchi, A., Shabestary, E.T., Hartwig, T.: Pressureless sintering of 3Y-TZP/stainless-steel composite layers, J. Am. Ceram. Soc., 91, 3493 – 3503, (2008).
42 Dourandish, M.A., Simchi, A.: Study the sintering behavior of nanocrystalline 3Y-TZP/430L stainless-steel composite layers for co-powder injection molding, J. Mater. Sci., 44, 1264 – 1274, (2009).
43 Baumann, A., Brieseck, M., Höhn, S., Moritz, T., Lenk, R.: Developments in multi-component powder injection moulding of steel-ceramic compounds using green tapes for inmould label process, Powder Injection Moulding International, 2, [1], 55 – 58, (2008).
44 Baumann, A., Moritz, T., Lenk, R.: Inmould labelling – a new process variant of the multicomponent powder injection moulding for the production of material composites, Techn. Keram. Werkstoffe, Kap. 3.4.8.8, 123. Erg.-Lfg. Juli 2011 (in german).
45 Slawik, T., Bergner, A., Puschmann, R., Franke, P., Raethel, J., Behnisch, T., Scholl, R., Berger, L.-M., Moritz, T., Zelm, R., Gude, M., Michaelis, A., Beyer, E., Leyens, C., Grossmann, H., Kieback, B.: Metal-ceramic layered materials and composites manufactured using powder techniques, Adv. Eng. Mater., 16, [10], 1293 – 1302, (2014).
46 Scholl, R., Dinh, L.N., Fister, D., Spieker, C.: Processes for the manufacture of fine metal, Alloy and Composite Powders,(in German), German patent, DE10331785, filed on 11.07.2003.
47 Scholl, R.: New powders for high-alloy sintered materials, (in German), Proceedings of 24th Hagen Symposium on Powder Metallurgy, (2005).
48 Kiran, U.R., Kumar, M.P., Sankaranarayana, M., Singh, A.K., Nandy, T.K.: High energy milling on tungsten powders, Int. J. Refract. Met. H., 48, 74 – 81, (2015), pre-published online.
Copyright
Göller Verlag GmbH