• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Evolution of the Fibre-Matrix Interactions in Basalt-Fibre-Reinforced Geopolymer-Matrix Composites after Heating

M. Welter1, M. Schmücker2, K.J.D. MacKenzie1

1 MacDiarmid Institute of Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, New Zealand
2 German Aerospace Center, Institute of Materials Research, Cologne, Germany

received August 15, 2014, received in revised form September 12, 2014, accepted October 1, 2014

Vol. 6, No. 1, Pages 17-24   DOI: 10.4416/JCST2014-00034

Abstract

The evolution of fibre-matrix interactions in basalt-fibre-reinforced geopolymer matrix composites after heating to 600, 800 and 1000 °C was investigated by means of SEM, EDS and XRD analyses. The basalt fibres showed no significant interfacial interaction up to 600 °C. The appearance of the fracture surfaces also remained largely unchanged. At higher temperatures, crystallisation reactions within the fibres and the Na-geopolymer matrix, respectively, could be observed along with an increasing embrittlement of the composite. Softening of the fibres and the development of several distinct reaction zones within the fibres was clearly evident after heating to 800 °C and 1000 °C. The formation of an iron-rich outer reaction zone within the fibre was observed above 800 °C. The interaction between fibre and matrix resulted in the formation of a crystalline albite phase after heating to 1000 °C. It is suggested that basalt fibres have great potential as reinforcements for the development of cost-efficient geopolymer-matrix composites and may be used for applications up to 600 °C.

Download Full Article (PDF)

Keywords

Geopolymer-matrix composites, fibre-matrix interaction, interface, basalt fibre

References

1 Davidovits, J.: Geopolymer chemistry and applications, Institut Géopolymère, Saint-Quentin, 2008.

2 Foerster, S.C.: Alkali-activated aluminosilicate composites, (in German), PhD Thesis, ETH Zürich, Switzerland, (1994).

3 Foerster S.C., Graule, T., Gauckler, L.J.: Strength and toughness of reinforced chemically bonded ceramics, In: Cement technology, Ed. Gartner, E.M., Uchikawa, U., Ceram. Trans., 40, 247 – 256, (1994).

4 Foerster S.C., Graule, T., Gauckler, L.J.: Thermal and mechanical properties of alkali-activated alumino-silicate based, high performance composites In: Advanced structural fiber composites, Ed. Vincenzini, P., Adv. Sci. Technol., 7, 117 – 124, (1995).

5 Lyon, R.E., Sorathia, U., Balaguru, P., Foden, A., Davidovits, J., Davidovics, M.: Fire response of geopolymer structural composites, Proceedings of the 1st International conference on composites in infrastructure ICCI, 1996

6 Lyon, R.E., Balaguru, P.N., Foden, A., Sorathia, U., Davidovits, J., Davidovics, M.: Fire resistant aluminosilicate composites, Fire. Mater., 21, 67 – 73, (1997).

7 Foden, A., Lyon, R., Balaguru, P.N., Davidovits, J.: High temperature inorganic resin for use in fibre reinforced composites, Proceedings of the 1st International conference on composites in infrastructure ICCI, 1996.

8 Foden, A.: Mechanical properties and material characterization of polysialate structural composites, PhD Thesis, Rutgers State University, USA, (1999).

9 Hammell, J., Balaguru, P.N., Lyon, R.: Influence of reinforcement types on the flexural properties of geopolymer composites, Proceedings of the 43rd International SAMPE Symposium, 1998.

10 Hammell, J.A., The influence of matrix composition and reinforcement type on the properties of polysialate composites, PhD Thesis, Rutgers State University, USA, (2000).

11 Hammell, J.A., Balaguru, P.N., Lyon, R.E.: Strength retention of fire resistant aluminosilicate-carbon composites under wet-dry conditions, Compos. Part. B, 31, 107 – 111, (2000).

12 He, P., Jia, D., Lin, T., Wang, M., Zhou, Y.: Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fibre reinforced geopolymer composites, Ceram. Int., 36, 1447 – 53, (2010).

13 He, P., Jia, D., Wang, M., Zhou, Y.: Improvement of high-temperature mechanical properties of heat treated Cf/geopolymer composites by sol-SiO2 impregnation, J. Eur. Ceram. Soc., 30, 3053 – 61, (2010).

14 He. P., Jia, D., Interface evolution of the Cf/leucite composites derived from Cf/geopolymer composites, Ceram. Int., 39, 1203 – 08, (2013).

15 Bortnovsky, O., Bezucha, P., Dedecek, J., Sobalik, Z., Vodickova, V., Kroisova, D., Roubicek, P., Urbanova, M.: Properties of phosphorus-containing geopolymer matrix and fibre reinforced composites, In: Mechanical Properties and Performance of Engineering Ceramics and Composites IV, Eds. Singh, D., Kriven, W.M., Salem, J., 283 – 299, (2009).

16 Tran, D.H., Kroisova, D., Louda, P., Bortnovsky, O., Bezucha, P.: Effect of curing temperature on the flexural properties of silica-based geopolymer carbon reinforced composites, Mater. Manufact. Eng., 37, 492 – 7, (2009).

17 Pernica, D., Reis, P.N.B., Ferreira, J.A.M., Louda, P.: Effect of test conditions on the bending strength of a geopolymer-reinforced composite, J. Mater. Sci., 45, 744 – 9, (2007).

18 Radford, D.W., Grabher, A., Bridge, J.: Inorganic polymer matrix composite strength related to interface condition, Materials, 2, 2216 – 27, (2009).

19 Lin, T., Jia, D., He, P., Wang, M.: Liang, D.: effects of fiber length on mechanical properties and fracture behaviour of short carbon fiber reinforced geopolymer matrix composites, Mater. Sci. Eng. A, 497, 181 – 5, (2008).

20 Lin, T., Jia, D., Wang, M., He, P., Liang, D.: Effects of fibre content on mechanical properties and fracture behaviour of short carbon fibre reinforced geopolymer matrix composites, Bull. Mater. Sci.. 32, 77 – 81, (2009).

21 Lin, T., Jia, D., He, P., Wang, M.: In situ crack growth observation and fracture behaviour of short carbon fibre reinforced geopolymer matrix composites, Mater. Sci. Eng. A, 527, 2404 – 7, (2010).

22 Kriven, W.M., Bell, J.B., Gordon, M.: Microstructure and microchemistry of fully-reacted geopolymers and geopolymer matrix composites, In: advances in ceramic matrix composites IX, Ceram. Trans., 153, 227 – 50, (2003).

23 Rill, E., Lowry, D.R., Kriven, W.M.; Properties of basalt fibre reinforced geopolymer composites, Ceram. Eng. Sci. Proc., 31, 57 – 67, (2010).

24 Musil, S.S., Kutyla, G.P., Kriven, W.M.: The effect of basalt chopped fibre reinforcement on the mechanical properties of potassium based geopolymer, Ceram. Eng. Sci. Proc., 33, 31 – 42, (2012).

25 Li, W., Xu, J.: Mechanical properties of basalt fibre reinforced geopolymeric concrete under impact load, Mater. Sci. Eng. A, 505, 178 – 186, (2009)

26 Li, W., Xu, J.: Impact characterization of basalt fibre reinforced geopolymeric concrete using a 100 mm-diameter split hopkinson pressure bar, Mater. Sci. Eng. A, 513 – 514, 145 – 15, (2009).

27 ] Dias, D.P., Thaumaturgo, C.: Fracture toughness of geopolymeric concretes reinforced with basalt fibres, Cement Concrete Comp., 27, 49 – 54, (2005).

28 [28] Comrie, D.C., Kriven, W.M.: Composite cold ceramic geopolymer in a refractory application, Ceram. Trans., 153, 211 – 25, (2003).

29 Defazio, C., Arafa, M.D., Balaguru, P.N.: Functional geopolymer composites for structural ceramic applications, Final Report, Ceram-RU9163, Center for Advanced Infrastructure and Transportation, Rutgers State University, USA, 2006, Available online from: http://cait.rutgers.edu/files/Ceram-RU9163.pdf (accessed: 6.11.2013).

30 Sun, P., Wu, H.: Transition from brittle to ductile behaviour of fly ash using PVA fibres, Cement Concrete Comp., 30, 29 – 36, (2008).

31 Zhang, Y., Sun, W., Li, Z: Impact behaviour and microstructural characteristics of PVA fiber reinforced fly ash-geopolymer boards prepared by extrusion technique, J. Mater. Sci., 41, 2787 – 2794, (2006).

32 Zhang, Y., Sun, W., Li, Z., Zhou, X., Eddie, C.: Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber, Constr. Build. Mater., 22, 370 – 383, (2008).

33 Zhang, Z, Yao, X., Zhu, H., Hua, S., Chen, Y.: Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer, J. Cent. South Univ. Technol., 16, 49 – 52, (2009).

34 Lowry D.R., Kriven W.M.: Effect of high tensile strength polypropylene chopped fibre reinforcements on the mechanical properties of sodium based geopolymer composites, Ceram. Eng. Sci. Proc., 31, 47 – 56, (2010).

35 Alzeer, M., MacKenzie, K.J.D.: Synthesis and mechanical properties of new fibre-reinforced composites of inorganic polymers with natural wool fibres, J. Mater. Sci., 47, 6958 – 65, (2012).

36 Alzeer, M., MacKenzie, K.J.D.: Synthesis and mechanical properties of novel composites of inorganic polymers (geopolymers) with unidirectional natural flax fibres, Appl. Clay Sci., 75 – 6, 148 – 152, (2013).

37 Welter, M.: Unidirectional fibre reinforced geopolymer matrix composites, PhD Thesis, Victoria University of Wellington, New Zealand, (2013).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH