Articles
All articles | Recent articles
Magnesium Aluminate Spinel Ceramics Containing Aluminum Titanate for Refractory Applications
K. Moritz, C.G. Aneziris, D. Hesky, N. Gerlach
Technische Universität Bergakademie Freiberg, Institute of Ceramics, Glass and Construction Materials, Agricolastr. 17, 09596 Freiberg, Germany
received November 05, 2013, received in revised form January 06, 2014, accepted February 11, 2014
Vol. 5, No. 2, Pages 125-130 DOI: 10.4416/JCST2013-00037
Abstract
The thermal shock resistance of alumina-rich magnesium aluminate spinel refractory ceramics with aluminum titanate as second phase was investigated. First, suitable thermal conditions for the formation of aluminum titanate from corundum and rutile were determined. Ground pre-synthesized aluminum titanate was added to the spinel powder. According to another route, alumina and titania powder were mixed with the spinel raw material in order to form the aluminum titanate in situ during sintering. Test bars were prepared by means of slip casting and sintered at 1650 °C. The bending strength of both types of as-sintered samples with aluminum titanate was significantly lower in comparison with pure spinel ceramic, but their thermal shock resistance was improved. When the test bars were quenched five times from 950 or 1150 °C, the retained strength of the materials with aluminum titanate was higher than that of the pure spinel samples.
Download Full Article (PDF)
Keywords
Refractories, magnesium aluminate spinel, aluminum titanate, thermal shock resistance
References
1 Sarkar, R.: Refractory applications of magnesium aluminate spinel, Interceram: Refractories Manual, 11 – 15, (2010).
2 Racher, R.P., McConnell, R.W., Buhr, A.: Magnesium aluminate spinel raw materials for high performance refractories for steel ladles, www.almatis.com/download/technicalpapers, n.d.
3 Bartha, P.: Magnesia spinel and spinel bricks (in German). In: Taschenbuch Feuerfeste Werkstoffe (Handbook of Refractories). Routschka, G. (Ed.). Vulkan-Verlag, Essen, Germany, 1997.
4 Low, I.M., Oo, Z.: Reformation of phase composition in decomposed aluminum titanate, Mater. Chem. Phys., 111, 9 – 12, (2008).
5 Aneziris, C.G., Pfaff, E.E., Maier, H.R.: Ceramic materials in the system ZrO2-TiO2-Al2O3 for applications in the ferrous and non-ferrous metallurgy, Key Eng. Mater., 136, 1829 – 1833, (1997).
6 Ohya, Y., Nakagawa, Z., Hamano, K.: Grain boundary microcracking due to thermal expansion anisotropy in aluminum titanate ceramics, J. Am. Ceram. Soc., 70, C185 – C186, (1987).
7 Low, I.M., Lawrence, D., Smith, R.I.: Factors controlling the thermal stability of aluminum titanate ceramics in vacuum, J. Am. Ceram. Soc., 88, 2957 – 2961, (2005).
8 Buscaglia, V., Nanni, P.: Decomposition of Al2TiO5 and Al2(1-x)MgxTi(1+x)O5 ceramics, J. Am. Ceram. Soc., 81, 2645 – 2653, (1998).
9 Ishitsuka, M., Sato, T., Ebdo, T., Shimada, M.: Synthesis and thermal stability of aluminum titanate solid solutions, J. Am. Ceram. Soc., 70, 69 – 71, (1987).
10 Tilloca, G.: Thermal stabilization of aluminum titanate and properties of aluminum titanate solid solutions, J. Mater. Sci., 26, 2809 – 2814, (1991).
11 Buscaglia, V., Nanni, P., Battilana, G., Aliprandi, G., Carry, C.: Reaction sintering of aluminum titanate: I – effect of MgO addition, J. Eur. Ceram. Soc., 13, 411 – 417, (1994).
12 Buscaglia, V., Alvazzi Delfrate, M., Leoni, M., Bottino, C., Nanni, P.: The effect of MgAl2O4 on the formation kinetics of Al2TiO5 from Al2O3 and TiO2 fine powders, J. Mater. Sci., 31, 1715 – 1724, (1996).
13 Runyan, J.L., Bennison, S.J.: Fabrication of flaw-tolerant aluminum-titanate-reinforced alumina, J. Eur. Ceram. Soc., 7, 93 – 99, (1991).
14 Padture, N.P., Bennison, S.J., Chan, H.M.: Flaw-tolerance and crack-resistance properties of alumina-aluminum titanate composites with tailored microstructures, J. Am. Ceram. Soc., 76, 2312 – 2320 (1993)
15 Uribe, R., Baudin, C.: Influence of a dispersion of aluminum titanate particles of controlled size on the thermal shock resistance of alumina, J.Am. Ceram. Soc., 86, 846 – 850, (2003).
16 Bueno, S., Berger, M.H., Moreno, R., Baudin, C.: Fracture behaviour of microcrack-free alumina-aluminum titanate ceramics with second phase nanoparticles at alumina grain boundaries, J. Eur. Ceram. Soc., 28, 1961 – 1971, (2008).
17 Aneziris, C.G., Dudczig, S., Gerlach, N., Berek, H., Veres, D.: Thermal shock performance of fine-grained Al2O3 ceramics with TiO2 and ZrO2 additions for refractory applications, Adv. Eng. Mater., 12, 478 – 485, (2010).
18 Dudczig, S., Veres, D., Aneziris, C.D., Skiera, E., Steinbrech, R.W.: Nano- and micrometre additions of SiO2, ZrO2 and TiO2 in fine grained alumina refractory ceramics for improved thermal shock performance, Ceram. Int., 38, 2011 – 2019, (2011).
19 Aneziris, C.G., Schärfl, W., Ullrich, B.: Microstructure evaluation of Al2O3 ceramics with Mg-PSZ- and TiO2-additions, J. Eur. Ceram. Soc., 27, 3191 – 3199, (2007).
20 Ganesh, I.: Aqueous slip casting of MgAl2O4 spinel powder, Bull. Mater. Sci., 34, 327 – 335, (2011).
21 Sathiyakumar, M., Gnanam, F.D.: Influence of MnO and TiO2 additives on density, microstructure and mechanical properties of Al2O3, Ceram. Int., 28, 195 – 200, (2002).
22 Sarkar, R., Bannerjee, G.: Effect of TiO2 on reaction sintered MgO-Al2O3 spinels, J. Eur. Ceram. Soc., 20, 2133 – 2141, (2000).
Copyright
Göller Verlag GmbH