• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Magnesium Aluminate Spinel Ceramics Containing Aluminum Titanate for Refractory Applications

K. Moritz, C.G. Aneziris, D. Hesky, N. Gerlach

Technische Universität Bergakademie Freiberg, Institute of Ceramics, Glass and Construction Materials, Agricolastr. 17, 09596 Freiberg, Germany

received November 05, 2013, received in revised form January 06, 2014, accepted February 11, 2014

Vol. 5, No. 2, Pages 125-130   DOI: 10.4416/JCST2013-00037

Abstract

The thermal shock resistance of alumina-rich magnesium aluminate spinel refractory ceramics with aluminum titanate as second phase was investigated. First, suitable thermal conditions for the formation of aluminum titanate from corundum and rutile were determined. Ground pre-synthesized aluminum titanate was added to the spinel powder. According to another route, alumina and titania powder were mixed with the spinel raw material in order to form the aluminum titanate in situ during sintering. Test bars were prepared by means of slip casting and sintered at 1650 °C. The bending strength of both types of as-sintered samples with aluminum titanate was significantly lower in comparison with pure spinel ceramic, but their thermal shock resistance was improved. When the test bars were quenched five times from 950 or 1150 °C, the retained strength of the materials with aluminum titanate was higher than that of the pure spinel samples.

Download Full Article (PDF)

Keywords

Refractories, magnesium aluminate spinel, aluminum titanate, thermal shock resistance

References

1 Sarkar, R.: Refractory applications of magnesium aluminate spinel, Interceram: Refractories Manual, 11 – 15, (2010).

2 Racher, R.P., McConnell, R.W., Buhr, A.: Magnesium aluminate spinel raw materials for high performance refractories for steel ladles, www.almatis.com/download/technicalpapers, n.d.

3 Bartha, P.: Magnesia spinel and spinel bricks (in German). In: Taschenbuch Feuerfeste Werkstoffe (Handbook of Refractories). Routschka, G. (Ed.). Vulkan-Verlag, Essen, Germany, 1997.

4 Low, I.M., Oo, Z.: Reformation of phase composition in decomposed aluminum titanate, Mater. Chem. Phys., 111, 9 – 12, (2008).

5 Aneziris, C.G., Pfaff, E.E., Maier, H.R.: Ceramic materials in the system ZrO2-TiO2-Al2O3 for applications in the ferrous and non-ferrous metallurgy, Key Eng. Mater., 136, 1829 – 1833, (1997).

6 Ohya, Y., Nakagawa, Z., Hamano, K.: Grain boundary microcracking due to thermal expansion anisotropy in aluminum titanate ceramics, J. Am. Ceram. Soc., 70, C185 – C186, (1987).

7 Low, I.M., Lawrence, D., Smith, R.I.: Factors controlling the thermal stability of aluminum titanate ceramics in vacuum, J. Am. Ceram. Soc., 88, 2957 – 2961, (2005).

8 Buscaglia, V., Nanni, P.: Decomposition of Al2TiO5 and Al2(1-x)MgxTi(1+x)O5 ceramics, J. Am. Ceram. Soc., 81, 2645 – 2653, (1998).

9 Ishitsuka, M., Sato, T., Ebdo, T., Shimada, M.: Synthesis and thermal stability of aluminum titanate solid solutions, J. Am. Ceram. Soc., 70, 69 – 71, (1987).

10 Tilloca, G.: Thermal stabilization of aluminum titanate and properties of aluminum titanate solid solutions, J. Mater. Sci., 26, 2809 – 2814, (1991).

11 Buscaglia, V., Nanni, P., Battilana, G., Aliprandi, G., Carry, C.: Reaction sintering of aluminum titanate: I – effect of MgO addition, J. Eur. Ceram. Soc., 13, 411 – 417, (1994).

12 Buscaglia, V., Alvazzi Delfrate, M., Leoni, M., Bottino, C., Nanni, P.: The effect of MgAl2O4 on the formation kinetics of Al2TiO5 from Al2O3 and TiO2 fine powders, J. Mater. Sci., 31, 1715 – 1724, (1996).

13 Runyan, J.L., Bennison, S.J.: Fabrication of flaw-tolerant aluminum-titanate-reinforced alumina, J. Eur. Ceram. Soc., 7, 93 – 99, (1991).

14 Padture, N.P., Bennison, S.J., Chan, H.M.: Flaw-tolerance and crack-resistance properties of alumina-aluminum titanate composites with tailored microstructures, J. Am. Ceram. Soc., 76, 2312 – 2320 (1993)

15 Uribe, R., Baudin, C.: Influence of a dispersion of aluminum titanate particles of controlled size on the thermal shock resistance of alumina, J.Am. Ceram. Soc., 86, 846 – 850, (2003).

16 Bueno, S., Berger, M.H., Moreno, R., Baudin, C.: Fracture behaviour of microcrack-free alumina-aluminum titanate ceramics with second phase nanoparticles at alumina grain boundaries, J. Eur. Ceram. Soc., 28, 1961 – 1971, (2008).

17 Aneziris, C.G., Dudczig, S., Gerlach, N., Berek, H., Veres, D.: Thermal shock performance of fine-grained Al2O3 ceramics with TiO2 and ZrO2 additions for refractory applications, Adv. Eng. Mater., 12, 478 – 485, (2010).

18 Dudczig, S., Veres, D., Aneziris, C.D., Skiera, E., Steinbrech, R.W.: Nano- and micrometre additions of SiO2, ZrO2 and TiO2 in fine grained alumina refractory ceramics for improved thermal shock performance, Ceram. Int., 38, 2011 – 2019, (2011).

19 Aneziris, C.G., Schärfl, W., Ullrich, B.: Microstructure evaluation of Al2O3 ceramics with Mg-PSZ- and TiO2-additions, J. Eur. Ceram. Soc., 27, 3191 – 3199, (2007).

20 Ganesh, I.: Aqueous slip casting of MgAl2O4 spinel powder, Bull. Mater. Sci., 34, 327 – 335, (2011).

21 Sathiyakumar, M., Gnanam, F.D.: Influence of MnO and TiO2 additives on density, microstructure and mechanical properties of Al2O3, Ceram. Int., 28, 195 – 200, (2002).

22 Sarkar, R., Bannerjee, G.: Effect of TiO2 on reaction sintered MgO-Al2O3 spinels, J. Eur. Ceram. Soc., 20, 2133 – 2141, (2000).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH