• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Synthesis of LaCrO3 and La0.9Ca0.1CrO3 by Modified Glycine Nitrate Process

A. Bonet, N. Travitzky, P. Greil

University of Erlangen-Nuremberg, Department of Materials Science (Glass and Ceramics), Martensstr. 5, D-91058 Erlangen, Germany

received October 11, 2013, received in revised form December 1, 2013, accepted March 11, 2014

Vol. 5, No. 2, Pages 93-100   DOI: 10.4416/JCST2013-00024

Abstract

LaCrO3 and La0.9Ca0.1CrO3 ceramics were synthesized in the modified glycine nitrate process (MGNP). The effect of the equivalence ratio Φe of precursor mixtures on the combustion reaction was investigated by means of DSC and TG-FTIR analyses. It was found that for Φe > 0.65 the combustion reaction proceeds in a self-propagating one-step process, resulting in the formation of well-crystallized single-phase powders. Further glycine addition (Φe < 0.65) leads to sluggish multi-step combustion, which is typical for fuel-rich combustion, and the formation of secondary phases such as La2CrO6. Furthermore it could be found that the ignition temperature of the precursors rises with rising fuel content. An influence of the equivalence ratio on the specific surface area and particle size of synthesized powders could not be detected. The specific surface area of the powders was in the range of 5 – 10 m2/g and particle size 100 – 150 nm.

Download Full Article (PDF)

Keywords

Lanthanum chromite, modified glycine nitrate process, combustion synthesis

References

1 Hashimoto, T., Takagi, K., Tsuda, K., Tanaka, M., Yoshida, K., Tagawa, H., Dokiya, M.: Determination of the space group of LaCrO3 by convergent-beam electron diffraction, J. Electrochem. Soc., 147, 4408 – 4410, (2000).

2 Minh, N.Q.: Ceramic fuel cells, J. Am. Ceram. Soc., 76, 563 – 588, (1993).

3 Fergus, J.W.: Lanthanum chromite-based materials for solid oxide fuel cell interconnects, Solid State Ionics, 171, 1 – 15, (2004).

4 Zhu, W.Z., Deevi, S.C.: Development of interconnect materials for solid oxide fuel cells, Mater. Sci. Eng., A348, 227 – 243, (2003).

5 Wakisaka, K., Kado, H., Yoshikado, S.: Fabrication and evaluation of ca, Sr-doped-LaCrO3 thin film electric heaters, Key Eng. Mat., 269, 121 – 124, (2004).

6 Suvorov, S., Zuev, A., Pozniak, I., Pechenkov, A., Shatunov, A., Kydryash, M., Niemann, B., Nacke, B.: Functional materials on the base of lanthanum chromite. In: Proceedings of the Third International Forum on Strategic Technologies IFOST 2008. Novosibirsk-Tomsk, 2008.

7 Andrianov, M.A., Balkevich, V.L., Sotnikov, V.E.: Use of lanthanum chromite for making electric heaters, Refract. Ind. Ceram., 21, 592 – 596, (1980).

8 Meadowcroft, D.B., Meier, P.G., Warren, A.C.: Hot ceramic electrodes for open-cycle MHD power generation, Energ. Convers., 12, 145 – 147, (1972).

9 Yokokawa, H., Sakai, N., Kawada, T., Dokiya, M.: Chemical thermodynamic considerations in sintering of LaCrO3-based perovskites, J. Electrochem. Soc., 138, 1018 – 1027, (1991).

10 Groupp, L., Anderson, H.U.: Densification of La1-xSrxCrO3, J. Am. Ceram. Soc., 59, 9 – 10, (1976).

11 Duvigneaud, P.H., Pilate, P., Cambier, F.: Factors affecting the sintering and the electrical properties of sr-doped LaCrO3, , 14, 359 – 367, (1994).

12 Sakai, N., Kawada, T., Yokokawa, H., Dokiya, M., Kojima, I.: Liquid-Phase-assisted sintering of calcium-doped lanthanum chromites, J. Am. Ceram. Soc., 76, 609 – 616, (1993).

13 Mori, M., Yamamoto, T., Ichikawa, T., Takeda, Y.: Dense sintered conditions and sintering mechanisms for alkaline earth metal (Mg, ca and Sr)-doped LaCrO3 perovskites under reducing atmosphere, Solid State Ionics, 148, 93 – 101, (2002).

14 Carter, J.D., Nasrallah, M.M., Anderson, H.U.: Liquid phase behavior in nonstoichiometric calcium-doped lanthanum chromites, J. Mater. Sci., 31, 157 – 163, (1996).

15 Simner, S.P., Hardy, J.S., Stevenson, J.W., Armstrong, T.R.: Sintering of lanthanum chromite using strontium vanadate, Solid State Ionics, 128, 53 – 63, (2000).

16 Chick, L.A., Pederson, L.R., Maupin, G.D., Bates, J.L., Thomas, L.E., Exarhos, G.J.: Glycine-nitrate combustion synthesis of oxide ceramic powders, Mater. Lett., 10, 6 – 12, (1990).

17 Purohit, R.D., Sharma, B.P., Pillai, K.T., Tyagi, A.K.: Ultrafine ceria powders via glycine-nitrate combustion, Mater. Res. Bull., 36, 2711 – 2721, (2001).

18 Toniolo, J.C., Lima, M.D., Takimi, A.S., Bergmann, C.P.: Synthesis of alumina powders by the glycine-nitrate combustion process, Mater. Res. Bull., 40, 561 – 571, (2005).

19 Bošković, S.B., Djurović, D.R., Zec, S.P., Matovic, B.Z., Zinkevich, F., Aldinger, F.: Doped and Co-doped CeO2: preparation and properties, Ceram. Int., 34, 2001 – 2006, (2008).

20 Bošković, S.B., Matovic, B.Z., Vlajić, M.D., Kristić, V.D.: Modified glycine nitrate procedure (MGNP) for the synthesis of SOFC nanopowders, Ceram. Int., 33, 98 – 93, (2007).

21 Liu, X., Su, W., Lu, Z.: Study on synthesis of Pr1-xCaxCrO3 and their electrical properties, Mater. Chem. Phys., 82, 327 – 330, (2003).

22 Kikukawa, N., Takemori, M., Nagano, Y., Sugasawa, M., Kobayashi, S.: Synthesis and magnetic properties of nanostructured spinel ferrites using a glycine-nitrate process, , 284, 206 – 214, (2004).

23 Valefi, M., Falamaki, C., Ebadzadeh, T.: New insights of the glycine-nitrate process for the synthesis of nano-crystalline 8YSZ, J. Am. Ceram. Soc., 90, 2008 – 2014, (2007).

24 Vijayan, L., Cheruku, R., Govinadaraj, G., Rajagopan, S.: Physical and electrical properties of combustion synthesized NASICON type Na3Cr2(PO4)3 crystallites: effect of glycine molar ratios, Mater. Chem. Phys., 130, 862 – 869, (2011).

25 Zhuravlev, V.D., Vasil'ev, V.G., Vladimirova, E.V., Shevchenko, V.G., Grigorov, I.V., Bamburov, V.G., Beketov, A.R., Baranov, M.V.: Glycine-nitrate combustion synthesis of finely dispersed alumina, Glass Phys. Chem., 36, 506 – 512, (2010).

26 Jain, S.R., Adiga, K.C., Verneker, V.R.P.: A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures, Combust. Flame, 40, 71 – 79, (1981).

27 Nair, S.R., Purohit, R.D., Tyagi, A.K., Shina, P.K., Sharma, B.P.: Role of glycine-to-nitrate ratio in influencing the powder characteristics of La(Ca)CrO3, Mater. Res. Bull., 43, 1573 – 1582, (2008).

28 Shao, Z., Zhou, W., Uhu, Z.: Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells, Prog. Mater. Sci., 57, 804 – 874, (2012).

29 Chick, L.A., Liu, J., Stevenson, J.W., Armstrong, T.R., McCready, D.E., Maupin, G.D., Coffey, G.W., Coyle, C.A.: Phase transitions and transient liquid-phase sintering in calcium-substituted lanthanum chromite, J. Am. Ceram. Soc., 80, 2109 – 2120, (1997).

30 Ianculescu, A., Braileanu, A., Pasuk, I., Zaharescu, M.: Phase formation study of alkaline earth-doped lanthanum chromites, J. Therm. Anal. Calorim., 66, 501 – 507, (2001).

31 Zupan, K., Pejovnik, S., Maček, J.: Synthesis of nanometer crystalline lanthanum chromite powders by the citrate-nitrate autoignition reaction, Acta Chim. Slov., 48, 137 – 145, (2001).

32 Nair, S.R., Purohit, R.D., Sinha, P.K., Tyagi, A.K.: Sr-doped LaCoO3 through acetate-nitrate combustion: Effect of extra oxidant NH4NO3, J. Alloy. and Compd., 477, 644 – 647, (2009).

33 Biamino, S., Badini, C.: Combustion synthesis of lanthanum chromite starting from water solutions: Investigation of process mechanism by DTA-TGA-MS, J. Eur. Ceram. Soc., 24, 3021 – 3034, (2004).

34 Fagerlund, G.: Determination of specific surface by the BET method, Matériaux et Construction, 6, 239 – 245, (1973).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH