Articles
All articles | Recent articles
Bioinorganics in Bioactive Calcium Silicate Ceramics for Bone Tissue Repair: Bioactivity and Biological Properties
H. Mohammadi1, M. Hafezi2, N. Nezafati2, S. Heasarki2, A. Nadernezhad3, S. M. H. Ghazanfari2, M. Sepantafar4
1 Department of Biomaterials, Science and Research Branch, Islamic Azad University, Yazd, Iran
2 Biomaterials Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran
3 Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran
4 Department of Metallurgy and Materials Engineering, Faculty of Engineering, University of Semnan, Semnan, Iran
received October 17, 2013, received in revised form December 29, 2013, accepted January 16, 2014
Vol. 5, No. 1, Pages 1-12 DOI: 10.4416/JCST2013-00027
Abstract
Bioinorganics and the use of metal ions in the synthesis and design of new materials have received considerable attention with regard to use as new biomaterials. One of the important roles of metal ions is the control of dissolution in biomaterials, which has an influence on their biological and chemical properties. Up until now, metal ions such as magnesium (Mg), zinc (Zn), titanium (Ti) and zirconium (Zr) have been used to dope silicate- and phosphate-based ceramics. Calcium silicate (CaSiO3, CS) ceramics are biocompatible and bioactive. Some CS ceramics have exhibited superior apatite formation ability in simulated body fluids (SBF) and their ionic dissolution products have been shown to enhance cell proliferation and differentiation. Their main drawback, however, is the high dissolution rate as this is detrimental to cells. Metal ions are used to modify their chemical composition and structure in order to overcome this complication. In this review paper, we consider the apatite formation ability, dissolution and the in vitro and in vivo biological properties of ion-doped CS ceramics such as bredigite, akermanite, monticellite, diopside, merwinite, hardystonite, baghdadite and sphene. Overall, according to the studies conducted on CS bioceramics, they may be a good candidate for bone tissue regeneration.
Download Full Article (PDF)
Keywords
Keywords: Calcium silicate, chemical stability, ion doping
References
1 Hench, L.L.: The story of Bioglass®, J. Mater. Sci.: Mater. Med., 17, 967 – 978, (2006).
2 Liu, Q. et al.: A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics, Biomaterials, 29, 4792 – 4799, doi:10.1016/j.biomaterials.2008.08.039, (2008).
3 Xia, L. et al.: Proliferation and osteogenic differentiation of human periodontal ligament cells on akermanite and beta-TCP bioceramics, Euro. Cells Mater., 22, 68 – 82, (2011).
4 Wang, G., Lu, Z., Dwarte, D., Zreiqat, H.: Porous scaffolds with tailored reactivity modulate in-vitro osteoblast responses, Mater. Sci. Eng.: C, 32, 1818 – 1826, doi:http://dx.doi.org/10.1016/j.msec.2012.04.068, (2012).
5 Hoppe, A., Guldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials, 32, 2757 – 2774, doi:10.1016/j.biomaterials.2011.01.004, (2011).
6 Meyer, U., Buchter, A., Wiesmann, H.P., Joos, U., Jones, D.B.: Basic reactions of osteoblasts on structured material surfaces, Euro. Cells Mater., 9, 39 – 49, (2005).
7 Ramaswamy, Y. et al.: The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic, Biomaterials, 29, 4392 – 4402, doi:http://dx.doi.org/10.1016/j.biomaterials.2008.08.006, (2008).
8 Iimori, Y., Kameshima, Y., Okada, K., Hayashi, S.: Comparative study of apatite formation on CaSiO3 ceramics in simulated body fluids with different carbonate concentrations, J. Mater. Sci.: Mater. Med., 16, 73 – 79, (2005).
9 Wu, C.: Methods of improving mechanical and biomedical properties of Ca-Si-based ceramics and scaffolds, Expert Rev. Med. Devic., 6, 237 – 241, (2009).
10 De Aza, P.N., Guitan, F., De Aza, S.: Bioactivity of wollastonite ceramics: in vitro evaluation. (Pergamon Press, 1994).
11 Siriphannon, P., Kameshima, Y., Yasumori, A., Okada, K., Hayashi, S.: Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid, J. Eur. Ceram. Soc., 22, 511 – 520, (2002).
12 Hench, L.L.: Biomaterials: a forecast for the future, Biomaterials, 19, 1419 – 1423, (1998).
13 Wu, C., Chang, J., Wang, J., Ni, S., Zhai, W.: Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic, Biomaterials, 26, 2925 – 2931, doi:10.1016/j.biomaterials.2004.09.019, (2005).
14 Wu, C., Ramaswamy, Y., Liu, X., Wang, G., Zreiqat, H.: Plasma-sprayed CaTiSiO5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity, J. Roy. Soc. Interface, 6, 159 – 168, doi:10.1098/rsif.2008.0274, (2009).
15 Wu, C. et al.: The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(DL-lactide-co-glycolide) films, Biomaterials, 30, 2199 – 2208, doi:10.1016/j.biomaterials.2009.01.029, (2009).
16 Xu, S. et al.: Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics, Biomaterials, 29, 2588 – 2596, doi:10.1016/j.biomaterials.2008.03.013, (2008).
17 Heikkila, J.T. et al.: Bioactive glass granules: a suitable bone substitute material in the operative treatment of depressed lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study, J. Mater. Sci.. Mater. M., 22, 1073 – 1080, doi:10.1007/s10856 – 011 – 4272 – 0, (2011).
18 Hench, L.L.: The story of bioglass, J . Mater. Sci.. Mater. M., 17, 967 – 978, doi:10.1007/s10856 – 006 – 0432-z, (2006).
19 Tirapelli, C., Panzeri, H., Soares, R.G., Peitl, O., Zanotto, E.D.: A novel bioactive glass-ceramic for treating dentin hypersensitivity, Braz. Oral Res., 24, 381 – 387, (2010).
20 Wu, C., Chang, J.: A review of bioactive silicate ceramics, Biomed. Mater., 8, 032001, doi:10.1088/1748 – 6041/8/3/032001, (2013).
21 Nedelec, J.M. et al.: Materials doping through sol-gel chemistry: a little something can make a big difference, J. Sol-Gel Sci. Technol., 46, 259 – 271, doi:10.1007/s10971 – 007 – 1665 – 0, (2008).
22 Valerio, P., Pereira, M.M., Goes, A.M., Leite, M.F.: The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production, Biomaterials, 25, 2941 – 2948, doi:10.1016/j.biomaterials.2003.09.086, (2004).
23 Wu, C., Chang, J., Ni, S., Wang, J.: In vitro bioactivity of akermanite ceramics, J. Biomed. Mater. Res. - A, 76, 73 – 80, doi:10.1002/jbm.a.30496, (2006).
24 Ou, J. et al.: Preparation of merwinite with apatite-formimg ability by sol-gel process, Key Eng.Mat., 330 – 332, 67 – 70, (2007).
25 Wu, C., Chang, J.: A novel akermanite bioceramic: preparation and characteristics. J. Biomater. Appl., 21, 119 – 129, doi:10.1177/0885328206057953, (2006).
26 Porter, A.E., Buckland, T., Hing, K., Best, S.M., Bonfield, W.: The structure of the bond between bone and porous silicon-substituted hydroxyapatite bioceramic implants, J. Biomed. Mater. Res. A, 78, 25 – 33, doi:10.1002/jbm.a.30690, (2006).
27 Ramaswamy, Y., Wu, C., Zhou, H., Zreiqat, H.: Biological response of human bone cells to zinc-modified ca-si-based ceramics, Acta Biomater., 4, 1487 – 1497, doi:10.1016/j.actbio.2008.04.014, (2008).
28 Zreiqat, H. et al.: The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts, Biomaterials, 26, 7579 – 7586, (2005).
29 Habibovic, P., Barralet, J.E.: Bioinorganics and biomaterials: bone repair, Acta Biomater., 7, 3013 – 3026, doi:10.1016/j.actbio.2011.03.027, (2011).
30 Wu Cheng-Tie, C.J.: Silicate bioceramics for bone tissue regeneration, J. Inorg. Mater., 28, 29 – 39, doi:10.3724/sp.j.1077.2013.12241, (2013).
31 Roohani-Esfahani, S. I. et al.: Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds, Acta Biomater., 8, 4162 – 4172, (2012).
32 Zreiqat, H. et al.: The incorporation of strontium and zinc into a calcium-silicon ceramic for bone tissue engineering, Biomaterials, 31, 3175 – 3184, doi:http://dx.doi.org/10.1016/j.biomaterials.2010.01.024, (2010).
33 Wu, C. et al.: The effect of Zn contents on phase composition, chemical stability and cellular bioactivity in Zn-Ca-Si system ceramics. J. Biomed. Mater. Res. B, 87, 346 – 353, doi:10.1002/jbm.b.31109, (2008).
34 Wu, C., Ramaswamy, Y., Soeparto, A., Zreiqat, H.: Incorporation of titanium into calcium silicate improved their chemical stability and biological properties, J. Biomed. Mater. Res. A, 86, 402 – 410, doi:10.1002/jbm.a.31623, (2008).
35 Althoff, J., Quint, P., Krefting, E.R., Hohling, H.J.: Morphological studies on the epiphyseal growth plate combined with biochemical and X-ray microprobe analyses, Histochemistry, 74, 541 – 552, (1982).
36 Hench, L.L.: Bioceramics: from concept to clinic. J. Am. Ceram. Soc., 74, 1487 – 1510, doi:10.1111/j.1151 – 2916.1991.tb07132.x, (1991).
37 Zhang, M., Lin, K., Chang, J.: Preparation and characterization of Sr-hardystonite (Sr2ZnSi2O7) for bone repair applications, Mat. Sci.Eng. C, 32, 184 – 188, doi:http://dx.doi.org/10.1016/j.msec.2011.10.017, (2012).
38 LeGeros, R.Z.: Calcium phosphates in oral biology and medicine, Monographs in Oral Science, 15, 1 – 201, (1991).
39 Okuma, T.: Magnesium and bone strength, Nutrition, 17, 679 – 680, (2001).
40 Rude, R.K., Gruber, H.E.: Magnesium deficiency and osteoporosis: animal and human observations, J. Nutr. Biochem., 15, 710 716, doi:10.1016/j.jnutbio.2004.08.001, (2004).
41 Webster, T.J., Ergun, C., Doremus, R.H., Bizios, R.: Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. mechanisms of osteoblast adhesion., J. Biomed. Mater. Res., 59, 312 – 317, (2002).
42 Wolf, F.I., Cittadini, A.: Magnesium in cell proliferation and differentiation, Front. Biosci., 4, D607 – 617, (1999).
43 Zreiqat, H. et al.: Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res., 62, 175 – 184, doi:10.1002/jbm.10270, (2002).
44 Moseley, D., Glasser, F.P.: Properties and composition of bredigite-structured phases, J. Mater. Sci., 17, 2736 – 2740, doi:10.1007/BF00543911, (1982).
45 Webster, T.J., Ergun, C., Doremus, R.H., Siegel, R.W., Bizios, R.: Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials, 21, 1803 – 1810, (2000).
46 Sgambato, A., Wolf, F.I., Faraglia, B., Cittadini, A.: Magnesium depletion causes growth inhibition, reduced expression of cyclin D1, and increased expression of P27Kip1 in normal but not in transformed mammary epithelial cells, J. Cell. Physiol., 180, 245 – 254, doi:10.1002/(sici)1097 – 4652(199908)180:2<245::aid-jcp12>3.0.co;2-r, (1999).
47 Sojka, J.E., Weaver, C.M.: Magnesium supplementation and osteoporosis, Nutr. Rev., 53, 71 – 74, (1995).
48 Stendig-Lindberg, G., Tepper, R.,Leichter, I.: Trabecular bone density in a two year controlled trial of peroral magnesium in osteoporosis, Magnesium Res., 6, 155 – 163, (1993).
49 Iwata, N.Y., Lee, G.-H., Tokuoka, Y., Kawashima, N.: Sintering behavior and apatite formation of diopside prepared by coprecipitation process, Colloid Surface B, 34, 239 – 245, doi:http://dx.doi.org/10.1016/j.colsurfb.2004.01.007, (2004).
50 Wu, C., Chang, J., Zhai, W., Ni, S., Wang, J.: Porous akermanite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J. Biomed. Mater. Res. B, 78, 47 – 55, doi:10.1002/jbm.b.30456, (2006).
51 Sripanyakorn, S. et al.: The silicon content of beer and its bioavailability in healthy volunteers, Brit. J. Nutr., 91, 403 – 409, doi:10.1079/bjn20031082, (2004).
52 Zhang, E., Yang, L., Xu, J., Chen, H.: Microstructure, mechanical properties and bio-corrosion properties of mg-si(-ca, Zn) alloy for biomedical application, Acta Biomater., 6, 1756 – 1762, doi:10.1016/j.actbio.2009.11.024, (2010).
53 LeVier, R.R.: Distribution of silicon in the adult rat and rhesus monkey, Bioinorg. Chem., 4, 109 – 115, doi:http://dx.doi.org/10.1016/S0006 – 3061(00)81019 – 4, (1975).
54 Najda, J., Gminski, J., Drozdz, M, Danch, A.: The action of excessive, inorganic silicon (Si) on the mineral metabolism of calcium (Ca) and magnesium (Mg), Biol. Trace Elem. Res., 37, 107 – 114, doi:10.1007/bf02783786, (1993).
55 Seaborn, C.D., Nielsen, F.H.: Effects of germanium and silicon on bone mineralization, Biol. Trace Elem. Res., 42, 151 – 164, doi:10.1007/bf02785386, (1994).
56 Seaborn, C.D., Nielsen, F.H.: Dietary silicon and arginine affect mineral element composition of rat femur and vertebra, Biol. Trace Elem. Res., 89, 239 – 250, (2002).
57 Schwarz, K., Milne, D.B.: Growth-promoting effects of silicon in rats, Nature, 239, 333 – 334, (1972).
58 Gao, T., Aro, H.T., Ylanen, H., Vuorio, E.: Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro, Biomaterials, 22, 1475 – 1483, (2001).
59 Gough, J.E., Jones, J.R., Hench, L.L.: Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold, Biomaterials, 25, 2039 – 2046, (2004).
60 Hing, K.A., Revell, P.A., Smith, N., Buckland, T.: Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds, Biomaterials, 27, 5014 – 5026, doi:10.1016/j.biomaterials.2006.05.039, (2006).
61 Xynos, I.D., Edgar, A.J., Buttery, L.D., Hench, L.L., Polak, J.M.: Gene-expression profiling of human osteoblasts following treatment with the ionic products of bioglass 45S5 dissolution, J. Biomed. Mater. Res., 55, 151 – 157 (2001).
62 Chen, Q., Miyaji, F., Kokubo, T., Nakamura, T.: Apatite formation on PDMS-modified CaO-SiO2-TiO2 hybrids prepared by sol-gel process, Biomaterials, 20, 1127 – 1132, (1999).
63 Wu, C., Ramaswamy, Y., Kwik, D., Zreiqat, H.: The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials,. 28, 3171 – 3181, doi:10.1016/j.biomaterials.2007.04.002, (2007).
64 Marie, P.J., Ammann, P., Boivin, G., Rey, C.: Mechanisms of action and therapeutic potential of strontium in bone, Calcified Tissue Int., 69, 121 – 129, (2001).
65 Rokita, E., Mutsaers, P.H.A., Quaedackers, J.A., Tatoń, G., de Voigt, M.J.A.: Bone mineralization after strontium and fluoride treatment in osteoporosis, Nucl. Instrum. Meth. B, 158, 412 – 417, doi:http://dx.doi.org/10.1016/S0168 – 583X(99)00361 – 4, (1999).
66 Verberckmoes, S.C., De Broe, M.E., D'Haese, P.C.: Dose-dependent effects of strontium on osteoblast function and mineralization, Kidney int., 64, 534 – 543, doi:10.1046/j.1523 – 1755.2003.00123.x, (2003).
67 Shannon, R.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A, 32, 751 – 767, doi:10.1107/S0567739476001551, (1976).
68 Saint-Jean, S.J., Camire, C.L., Nevsten, P., Hansen, S., Ginebra, M.P.: Study of the reactivity and in vitro bioactivity of Sr-substituted alpha-TCP cements, J.Mater. Sci. Mater. M., 16, 993 – 1001, doi:10.1007/s10856 – 005 – 4754-z, (2005).
69 Li, J., Liao, H., Hermansson, L.: Sintering of partially-stabilized zirconia and partially-stabilized zirconia-hydroxyapatite composites by hot isostatic pressing and pressureless sintering, Biomaterials, 17, 1787 – 1790, (1996).
70 Daculsi, G., LeGeros, R.Z., Mitre, D.: Crystal dissolution of biological and ceramic apatites, Calcified Tissue Int., 45, 95 – 103, (1989).
71 Kishi, Y., Shimojima, H., Ohsio, S., Saitoh, H., Uematsu, K.: Microstructure design of HIPed TiO2 ceramics for improved corrosion resistance, J. Mater. Sci. Lett., 16, 1342 – 1344, doi:10.1023/A:1018568101522, (1997).
72 Porter, A.E. et al.: Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo. J. Biomed. Mater. Res A, 69, 670 – 679, doi:10.1002/jbm.a.30035, (2004).
73 Yamaguchi, M., Ehara, Y.: Zinc decrease and bone metabolism in the femoral-metaphyseal tissues of rats with skeletal unloading, Calcified Tissue Int., 57, 218 – 223, (1995).
74 Yamaguchi, M., Inamoto, K.,Suketa, Y.: Effect of essential trace metals on bone metabolism in weanling rats: comparison with zinc and other metals' actions, Res. Exp. Med. Z.Ges. Exp. Med., 186, 337 – 342 (1986).
75 Yamaguchi, M., Oishi, H., Suketa, Y.: Stimulatory effect of zinc on bone formation in tissue culture, Biochem. Pharmacol., 36, 4007 – 4012 (1987).
76 Yamaguchi, M., Oishi, H., Suketa, Y.: Zinc stimulation of bone protein synthesis in tissue culture: activation of aminoacyl-tRNA synthetase, Biochem. Pharmacol., 37, 4075 – 4080, doi:http://dx.doi.org/10.1016/0006 – 2952(88)90098 – 6, (1988).
77 Yamaguchi, M., Ozaki, K.: Aging affects cellular zinc and protein synthesis in the femoral diaphysis of rats. Res. Exp. Med. Z. Ges. Exp. Med., 190, 295 – 300, (1990).
78 Yamaguchi, M., Yamaguchi, R.: Action of zinc on bone metabolism in rats: increases in alkaline phosphatase activity and DNA content, Biochem. Pharmacol., 35, 773 – 777, doi:http://dx.doi.org/10.1016/0006 – 2952(86)90245 – 5, (1986).
79 Gil-Albarova, J. et al.: The in vivo behaviour of a sol-gel glass and a glass-ceramic during critical diaphyseal bone defects healing, Biomaterials, 26, 4374 – 4382, doi:10.1016/j.biomaterials.2004.11.006, (2005).
80 Tapiero, H., Tew, K.D.: Trace elements in human physiology and pathology: zinc and metallothioneins, Biomed. Pharmacother., 57, 399 – 411, (2003).
81 Amro, N.A. et al.: High-resolution atomic force microscopy studies of the escherichia coli outer Membrane: structural basis for permeability, Langmuir, 16, 2789 – 2796, doi:10.1021/la991013x, (2000).
82 Feng, Q. L. et al.: A mechanistic study of the antibacterial effect of silver ions on escherichia coli and staphylococcus aureus J. Biomed. Mater. Res., 52, 662 – 668, (2000).
83 Sondi, I., Salopek-Sondi, B.: Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interf. Sci., 275, 177 – 182, doi:10.1016/j.jcis.2004.02.012, (2004).
84 Maehira, F., Miyagi, I., Eguchi, Y.: Effects of calcium sources and soluble silicate on bone metabolism and the related gene expression in mice, Nutrition, 25, 581 – 589, doi:10.1016/j.nut.2008.10.023, (2009).
85 Lappalainen, R., Knuuttila, M.: Mg content of healthy and chronically diseased human cancellous bone in relation to age and some physical and chemical factors, Med. Biol., 63, 144 – 148, (1985).
86 Wood, D.J., Cooper, C., Stevens, J., Edwardson, J.: Bone mass and dementia in hip fracture patients from areas with different aluminium concentrations in water supplies, Age Ageing, 17, 415 – 419, (1988).
87 Yasui, M., Yase, Y., Ota, K.: Distribution of calcium in central nervous system tissues and bones of rats maintained on calcium-deficient diets, J. Neurolog. Sci., 105, 206 – 210, (1991).
88 Brown, E.M., MacLeod, R.J.: Extracellular calcium sensing and extracellular calcium signaling, Physiol. Rev., 81, 239 – 297, (2001).
89 Cifuentes, M., Albala, C., Rojas, C.: Calcium-sensing receptor expression in human adipocytes, Endocrinology, 146, 2176 – 2179, doi:10.1210/en.2004 – 1281, (2005).
90 Kifor, O. et al.: Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells, Am. J.Physiol.-Renal, 280, F291 – 302, (2001).
91 Zaidi, M. et al.: A ryanodine receptor-like molecule expressed in the osteoclast plasma membrane functions in extracellular Ca2+ sensing, J. Clin. Invest., 96, 1582 – 1590, doi:10.1172/jci118197, (1995).
92 Zayzafoon, M.: Calcium/calmodulin signaling controls osteoblast growth and differentiation, J. Cell. Biochem., 97, 56 – 70, doi:10.1002/jcb.20675, (2006).
93 Kulakov, O.B., Doktorov, A.A., D'Iakova S,V., Denisov-Nikol'skii Iu, I., Grotz, K.A.: Experimental study of osseointegration of zirconium and titanium dental implants, Morfologiia, 127, 52 – 55, (2005).
94 Piconi, C., Maccauro, G.: Zirconia as a ceramic biomaterial, Biomaterials, 20, 1 – 25, (1999).
95 Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K.: Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mat. Res., 5, 117 – 141, doi:10.1002/jbm.820050611, (1971).
96 Pecheva, E., Petrov, T., Lungu, C., Montgomery, P., Pramatarova, L.: Stimulated in vitro bone-like apatite formation by a novel laser processing technique, Chem. Eng. J., 137, 144 – 153, doi:http://dx.doi.org/10.1016/j.cej.2007.07.096, (2008).
97 Hench, L.L., Paschall, H.A.: Histochemical responses at a biomaterial's interface. J. Biomed. Mater. Res., 8, 49 – 64, doi:10.1002/jbm.820080307, (1974).
98 Merolli, A., Leali, P.T., Guidi, P.L., Gabbi, C.: Comparison in in-vivo response between a bioactive glass and a non-bioactive glass, J.Mater. Sci. Mater. M., 11, 219 – 222, (2000).
99 Nonami, T., Tsutsumi, S.: Study of diopside ceramics for biomaterials, J. Mater. Sci.. Mater. M., 10, 475 – 479, (1999).
100 Lee, K. Y. et al.: Ceramic bioactivity: progresses, challenges and perspectives, Biomed. Mater., 1, R31 – 37, doi:10.1088/1748 – 6041/1/2/r01, (2006).
101 Toquet, J. et al.: Osteogenic potential in vitro of human bone marrow cells cultured on macroporous biphasic calcium phosphate ceramic, J. Biomed. Mater. Res., 44, 98 – 108, (1999).
102 Fresa, R., Costantini, A., Buri, A., Branda, F.: Apatite formation on (2 – x)CaO·x3 M2O3·2SiO2 glasses (M = La, Y; 0 ≤ x ≤ 0.6) in a simulated body fluid, Biomaterials, 16, 1249 – 1253, doi:http://dx.doi.org/10.1016/0142 – 9612(95)98132-X, (1995).
103 Kamitakahara, M. et al.: Preparation of porous glass-ceramics containing whitockite and diopside for bone repair, J. Ceram. Soc. Jpn., 114, 82 – 86, (2006).
104 Ohtsuki, C., Kokubo, T., Yamamuro, T.: Mechanism of apatite formation on CaOSiO2P2O5 glasses in a simulated body fluid, J. Non-Cryst. Solids, 143, 84 – 92, doi:http://dx.doi.org/10.1016/S0022 – 3093(05)80556 – 3, (1992).
105 Lin, K. et al.: Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics, Ceram. Int., 31, 323 – 326, doi:http://dx.doi.org/10.1016/j.ceramint.2004.05.023, (2005).
106 Arcos, D., Greenspan, D.C., Vallet-Regi, M: A new quantitative method to evaluate the in vitro bioactivity of melt and sol-gel-derived silicate glasses, J. Biomed. Mater. Res. A, 65, 344 – 351, doi:10.1002/jbm.a.10503, (2003).
107 Ducheyne, P., Radin, S., King, L.: The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. dissolution, J. Biomed. Mater. Res., 27, 25 – 34, doi:10.1002/jbm.820270105, (1993).
108 Liu, X., Morra, M., Carpi, A., Li, B.: Bioactive calcium silicate ceramics and coatings, Biomed. PharmaCother, 62, 526 – 529, doi:http://dx.doi.org/10.1016/j.biopha.2008.07.051, (2008).
109 Ou, J. et al.: Preparation and in vitro bioactivity of novel merwinite ceramic, Biomed. Mater., 3, 015015, doi:10.1088/1748 – 6041/3/1/015015, (2008).
110 Gou, Z., Chang, J.: Synthesis and in vitro bioactivity of dicalcium silicate powders, J. Eur. Ceram. Soc., 24, 93 – 99, doi:http://dx.doi.org/10.1016/S0955 – 2219(03)00320 – 0, (2004).
111 Silver, I.A., Deas, J., Erecinska, M.: Interactions of bioactive glasses with osteoblasts in vitro: Effects of 45S5 bioglass, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability, Biomater., 22, 175 – 185, (2001).
112 el-Ghannam, A., Ducheyne, P., Shapiro, I.M.: Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix, Biomater., 18, 295 – 303, (1997).
113 Kaunitz, J.D., Yamaguchi, D.T.: TNAP, TrAP, ecto-purinergic signaling, and bone remodeling, J.Cell. Biochem. 105, 655 – 662, doi:10.1002/jcb.21885, (2008).
114 Pan, H., Zhao, X., Darvell, B.W., Lu, W.W.: Apatite-formation ability--predictor of "bioactivity"?, Acta Biomater., 6, 4181 – 4188, doi:10.1016/j.actbio.2010.05.013, (2010).
115 Xiong, K. et al.: Control of the dissolution of ca and si ions from CaSiO3 bioceramic via tailoring its surface structure and chemical composition, J. Am. Ceram. Soc., 96, 691 – 696, doi:10.1111/jace.12168, (2013).
116 Lin, K., Zhang, M., Zhai, W., Qu, H., Chang, J.: Fabrication and characterization of Hydroxyapatite/Wollastonite composite bioceramics with controllable properties for hard tissue repair, J. Am. Ceram. Soc., 94, 99 – 105, doi:10.1111/j.1551 – 2916.2010.04046.x, (2011).
117 Zhao, L., Wu, C., Lin, K., Chang, J.: The effect of poly(lactic-co-glycolic acid), (PLGA) coating on the mechanical, biodegradable, bioactive properties and drug release of porous calcium silicate scaffolds, Bio-med. Mater. Eng., 22, 289 – 300, doi:10.3233/bme-2012 – 0719, (2012).
118 Wu, C., Chang, J., Xiao, Y.: Advanced bioactive inorganic materials for bone regeneration and drug delivery. 25 – 40, CRC Press (2013).
119 Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nichols, M.C.: Handbook of mineralogy, mineral data publishing, (2003).
120 Wu, C., Chang, J. Synthesis and in vitro bioactivity of bredigite powders, J. Biomater. Appl., 21, 251 – 263, doi:10.1177/0885328206062360, (2007).
121 Wu, C., Chang, J., Zhai, W., Ni, S.: A novel bioactive porous bredigite (Ca7MgSi4O16) scaffold with biomimetic apatite layer for bone tissue engineering, J. Mater. Sci. M., 18, 857 – 864, doi:10.1007/s10856 – 006 – 0083 – 0, (2007).
122 Wu, C., Chang, J.: Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics, J. Biomed. Mater. Res. B, 83, 153 – 160, doi:10.1002/jbm.b.30779, (2007).
123 Huang, X.-H., Chang, J.: Preparation of nanocrystalline bredigite powders with apatite-forming ability by a simple combustion method, Mater. Res. Bull., 43, 1615 – 1620, doi:http://dx.doi.org/10.1016/j.materresbull.2007.06.033, (2008).
124 Hu, S. et al.: Antibacterial activity of silicate bioceramics, J. Wuhan Univ. Technol., 26, 226 – 230, doi:10.1007/s11595 – 011 – 0202 – 8, (2011).
125 Zhai, W. et al.: Stimulatory effects of the ionic products from Ca-Mg-Si bioceramics on both osteogenesis and angiogenesis in vitro, Acta biomater., 9, 8004 – 8014, doi:http://dx.doi.org/10.1016/j.actbio.2013.04.024, (2013).
126 Zhou, Y., Wu, C., Zhang, X., Han, P., Xiao, Y.: The ionic products from bredigite bioceramics induced cementogenic differentiation of periodontal ligament cells via activation of the Wnt/β-catenin signalling pathway, J.Mater. Chem. B, 1, 3380 – 3389, doi:10.1039/C3TB20445F, (2013).
127 Razavi, M. et al.: Surface modification of magnesium alloy implants by nanostructured bredigite coating, Mater. Lett., doi:http://dx.doi.org/10.1016/j.matlet.2013.09.068.
128 Nakajima, S.: Experimental studies of healing process on reinforcement ceramic implantation in rabbit mandible, Shika gakuho. Dental science reports, 90, 525 – 553, (1990).
129 Nakajima, S., Harada, Y., Kurihara, Y., Wakatsuki, T., Noma, H.:Physicochemical characteristics of new reinforcement ceramic implant, Shika gakuho. Dental science reports, 89, 1709 – 1717, (1989).
130 De Aza, P.N., Luklinska, Z.B., Anseau, M.: Bioactivity of diopside ceramic in human parotid saliva, J. Biomed. Mater. Res. B, 73, 54 – 60, doi:10.1002/jbm.b.30187, (2005).
131 Toya, T., Kameshima, Y., Yasumori, A., Okada, K.: Preparation and properties of glass-ceramics from wastes (Kira) of silica sand and kaolin clay refining, J.Eur. Ceram. Soc., 24, 2367 – 2372, doi:http://dx.doi.org/10.1016/S0955 – 2219(03)00628 – 9, (2004).
132 Salman, S.M., Salama, S.N., Darwish, H., Abo-Mosallam, H.A.: In vitro bioactivity of glass-ceramics of the CaMgSi2O6-CaSiO3-Ca5(PO4)3F-Na2SiO3 system with TiO2 or ZnO additives, Ceram. Int., 35, 1083 – 1093, doi:http://dx.doi.org/10.1016/j.ceramint.2008.04.025, (2009).
133 Iwata, N.Y., Lee, G.-H., Tsunakawa, S., Tokuoka, Y., Kawashima, N.: Preparation of diopside with apatite-forming ability by sol-gel process using metal alkoxide and metal salts, Colloid Surface B, 33, 1 – 6, doi:http://dx.doi.org/10.1016/j.colsurfb.2003.07.004, (2004).
134 Hsu, F.Y., Chueh, S.C., Wang, Y.J.: Microspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth, Biomaterials, 20, 1931 – 1936, (1999).
135 Wu, C., Zreiqat, H.: Porous bioactive diopside (CaMgSi2O6) ceramic microspheres for drug delivery, Acta Biomater., 6, 820 – 829, doi:http://dx.doi.org/10.1016/j.actbio.2009.09.025, (2010).
136 Wu, C., Ramaswamy, Y., Zreiqat, H.: Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering, Acta Biomater., 6, 2237 – 2245, doi:10.1016/j.actbio.2009.12.022, (2010).
137 Chandrasekaran, V., Taggart, R., Polonis, D.H.: The influence of constitution and microstructure on the temperature coefficient of resistivity in Ti-base alloys, J. Mater. Sci., 9, 961 – 968, doi:10.1007/BF00570390, (1974).
138 Xue, W., Liu, X., Zheng, X., Ding, C.: Plasma-sprayed diopside coatings for biomedical applications, Surf. Coat. Tech., 185, 340 – 345, doi:http://dx.doi.org/10.1016/j.surfcoat.2003.12.018, (2004).
139 Sainz, M.A., Pena, P., Serena, S., Caballero, A.: Influence of design on bioactivity of novel CaSiO3-CaMg(SiO3)2 bioceramics: in vitro simulated body fluid test and thermodynamic simulation, Acta Biomater., 6, 2797 – 2807, doi:10.1016/j.actbio.2010.01.003, (2010).
140 Zhang, M., Liu, C., Sun, J., Zhang, X.: Hydroxyapatite/diopside ceramic composites and their behaviour in simulated body fluid, Ceram. Int., 37, 2025 – 2029, doi:http://dx.doi.org/10.1016/j.ceramint.2011.01.045, (2011).
141 Zhang, M., Liu, C., Zhang, X., Pan, S., Xu, Y.: Al2O3/diopside ceramic composites and their behaviour in simulated body fluid, Ceram. Int., 36, 2505 – 2509, doi:http://dx.doi.org/10.1016/j.ceramint.2010.07.004, (2010).
142 Liu, N., Fan, W., Wu, C., Fan, B.: The interactions of Mg2+/Zn2+-containing silicate materials with stem cells and bacteria, Mater. Lett., 112, 105 – 108, doi:http://dx.doi.org/10.1016/j.matlet.2013.08.099, (2013).
143 Zhang, Y., Li, S., Wu, C.: The in vitro and in vivo cementogenesis of CaMgSi2O6 bioceramic scaffolds, J. Biomed. Mater. Res. A, n/a-n/a, doi:10.1002/jbm.a.34679, (2013).
144 Liu, G. et al.: The effects of bioactive akermanite on physiochemical, drug-delivery, and biological properties of poly(lactide-co-glycolide) beads, J. Biomed. Mater. Res., B, 96, 360 – 368, doi:10.1002/jbm.b.31779, (2011).
145 Luo, T., Wu, C., Zhang, Y.: The in vivo osteogenesis of mg or Zr-modified silicate-based bioceramic spheres, J. Biomed. Mater. Res. A, 100, 2269 – 2277, (2012).
146 Hafezi-Ardakani, M., Moztarzadeh, F., Rabiee, M., Talebi, A. R.: Synthesis and characterization of nanocrystalline merwinite (Ca3Mg(SiO4)2) via sol-gel method, Ceram. Int., 37, 175 – 180, doi:http://dx.doi.org/10.1016/j.ceramint.2010.08.034, (2011).
147 Hafezi-Ardakania, M. et al.: Sol-gel synthesis and apatite-formation ability of nanostructure merwinite (Ca3MgSi2O8) as a novel bioceramic, J. Ceram. Process. Res., 11, 765 – 768, (2010).
148 Abbasi-Shahni, M., Hesaraki, S., Behnam-Ghader, A., Hafezi-Ardakani, M.: Mechanical properties and in vitro bioactivity of β-tri calcium phosphate, merwinite nanocomposites, Key Eng. Mat., 493 – 494, 582 – 587, (2012).
149 Hafezi, M., Reza Talebi, A., Mohsen Miresmaeili, S., Sadeghian, F., Fesahat, F.: Histological analysis of bone repair in rat femur via nanostructured merwinite granules, Ceram. Int., 39, 4575 – 4580, doi:http://dx.doi.org/10.1016/j.ceramint.2012.11.054, (2013).
150 Sun, H., Wu, C., Dai, K., Chang, J., Tang, T.: Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics, Biomaterials, 27, 5651 – 5657, doi:10.1016/j.biomaterials.2006.07.027, (2006).
151 Bhatkar, V.B., Bhatkar, N.V.: Combustion synthesis and photoluminescence characteristics of Akermanite: A novel biomaterial, IJAEST, 5, 184 – 186.
152 Hou, X. et al.: Effect of akermanite morphology on precipitation of bone-like apatite, Appl. Surf. Sci., 257, 3417 – 3422, doi:http://dx.doi.org/10.1016/j.apsusc.2010.11.037, (2011).
153 Huang, Y. et al.: In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration, Biomaterials, 30, 5041 – 5048, doi:10.1016/j.biomaterials.2009.05.077, (2009).
154 Anselme, K: Osteoblast adhesion on biomaterials, Biomaterials, 21, 667 – 681, (2000).
155 Gu, H. et al.: The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway, Biomaterials, 32, 7023 – 7033, doi:10.1016/j.biomaterials.2011.06.003, (2011).
156 Zhai, W. et al.: Silicate bioceramics induce angiogenesis during bone regeneration, Acta Biomater., 8, 341 – 349, doi:10.1016/j.actbio.2011.09.008, (2012).
157 Wu, C., Chang, J.: Synthesis and apatite-formation ability of akermanite, Mater. Lett., 58, 2415 – 2417, doi:http://dx.doi.org/10.1016/j.matlet.2004.02.039, (2004).
158 Goudouri, O. M. et al.: Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering, Mater. Res. Bull., doi:http://dx.doi.org/10.1016/j.materresbull.2013.09.027.
159 Razavi, M. et al.: Controlling the degradation rate of bioactive magnesium implants by electrophoretic deposition of akermanite coating, Ceram. Int, doi:http://dx.doi.org/10.1016/j.ceramint.2013.08.027.
160 Chen, X. et al.: Effect of MgO contents on the mechanical properties and biological performances of bioceramics in the MgO-CaO-SiO2 system, J. Mater. Sci. Mater. M., 21, 1463 – 1471, doi:10.1007/s10856 – 010 – 4025 – 5, (2010).
161 Yi, D. et al.: Preparation and in vitro evaluation of plasma-sprayed bioactive akermanite coatings, Biomed. Mater., 7, 065004, (2012).
162 Chen, X. et al.: Effect of MgO contents on the mechanical properties and biological performances of bioceramics in the MgO-CaO-SiO2 system, J. Mater. Sci. Mater. M., 21, 1463 – 1471, doi:10.1007/s10856 – 010 – 4025 – 5, (2010).
163 Zhang, M. et al.: Biological responses of human bone marrow mesenchymal stem cells to Sr-M-Si (M = Zn, Mg) silicate bioceramics, J. Biomed. Mater, Res. A, 100, 2979 – 2990, doi:10.1002/jbm.a.34246, (2012).
164 Chen, X. et al.: Synthesis and characteristics of monticellite bioactive ceramic, J. Mater. Sci. Mater. M, 19, 1257 – 1263, doi:10.1007/s10856 – 007 – 3233 – 0, (2008).
165 Liang, Y., Xie, Y., Ji, H., Huang, L., Zheng, X.: Excellent stability of plasma-sprayed bioactive Ca3ZrSi2O9 ceramic coating on Ti-6Al-4V, Appl. Surf. Sci., 256, 4677 – 4681, doi:http://dx.doi.org/10.1016/j.apsusc.2010.02.071, (2010).
166 Biagioni, C., Bonaccorsi, E., Perchiazzi, N., Merlino, S.: Single crystal refinement of the structure of baghdadite from fuka (Okayama prefecture, Japan), Period. Mineral, 79, 1 – 9, (2010).
167 Ramaswamy, Y. et al.: Sphene ceramics for orthopedic coating applications: an in vitro and in vivo study, Acta Biomater., 5, 3192 – 3204, doi:http://dx.doi.org/10.1016/j.actbio.2009.04.028, (2009).
168 Wang, G. et al.: Nanostructured glass-ceramic coatings for orthopaedic applications. J.R. Soc. Interface, 8, 1192 – 1203, doi:10.1098/rsif.2010.0680, (2011).
169 Wu, C. et al.: Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method, Acta Biomater., 4, 569 – 576, doi:http://dx.doi.org/10.1016/j.actbio.2007.11.005, (2008).
170 Wu, C., Ramaswamy, Y., Liu, X., Wang, G., Zreiqat, H.: Plasma-sprayed CaTiSiO5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity. J. R. Soc. Interface, 6, 159 – 168, doi:10.1098/rsif.2008.0274, (2009).
171 Ardit, M., Cruciani, G., Dondi, M.: in Z.Kristallogr. Vol. 225 298, (2010).
172 Wu, C., Chang, J., Zhai, W.: A novel hardystonite bioceramic: preparation and characteristics, Ceram. Int., 31, 27 – 31, doi:http://dx.doi.org/10.1016/j.ceramint.2004.02.008, (2005).
173 Courthéoux, L., Lao, J., Nedelec, J.M., Jallot, E.: Controlled bioactivity in zinc-doped Sol-Gel-derived binary bioactive glasses, J. Phys. Chem. C, 112, 13663 – 13667, doi:10.1021/jp8044498, (2008).
174 Wu, C., Chang, J., Zhai, W.: A novel hardystonite bioceramic: preparation and characteristics, Ceram. Int., 31, 27 – 31, doi:http://dx.doi.org/10.1016/j.ceramint.2004.02.008, (2005).
175 Li, K. et al.: Chemical stability and antimicrobial activity of plasma sprayed bioactive Ca2ZnSi2O7 coating, J. Mater. Sci. Mater. M., 22, 2781 – 2789, doi:10.1007/s10856 – 011 – 4454 – 9, (2011).
176 Li, K., Xie, Y., Huang, L., Ji, H., Zheng, X.: Antibacterial mechanism of plasma sprayed Ca2ZnSi2O7 coating against escherichia coli, J. Mater. Sci. Mater. M., 24, 171 – 178, doi:10.1007/s10856 – 012 – 4788-y, (2013).
177 Yu, J. et al.: In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants, PloS one, 8, e57564, doi:10.1371/journal.pone.0057564, (2013).
178 Boyd, D. et al.: Preliminary investigation of novel bone graft substitutes based on strontium-calcium-zinc-silicate glasses, J. Mater. Sci. Mater. M., 20, 413 – 420, doi:10.1007/s10856 – 008 – 3569 – 0, (2009).
179 Lu, H. et al.: In vitro proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells cultured with hardystonite (Ca2ZnSi2O7) and {beta}-TCP ceramics, J. Biomater. Appl., 25, 39 – 56, doi:10.1177/0885328209342469, (2010).
180 Roohani-Esfahani, S. I. et al.: Unique microstructural design of ceramic scaffolds for bone regeneration under load, Acta Biomater., doi:10.1016/j.actbio.2013.02.039, (2013).
181 Zhang, W. et al.: The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration, Biomaterials, 34, 3184 – 3195, doi:10.1016/j.biomaterials.2013.01.008, (2013).
182 Jaiswal, A.K. et al.: Hardystonite improves biocompatibility and strength of electrospun polycaprolactone nanofibers over hydroxyapatite: A comparative study. Mater. Sci. Eng. C, 33, 2926 – 2936, doi:http://dx.doi.org/10.1016/j.msec.2013.03.020, (2013).
183 Li, K. et al.: Effects of Zn content on crystal structure, cytocompatibility, antibacterial activity, and chemical stability in zn-modified calcium silicate coatings, J. Therm. Spray. Techn., 1 – 9, doi:10.1007/s11666 – 013 – 9938 – 3, (2013).
184 Song, W. et al.: Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles, Toxicol. Lett., 199, 389 – 397, doi:http://dx.doi.org/10.1016/j.toxlet.2010.10.003, (2010).
185 Li, K., Xie, Y., Huang, L., Ji, H., Zheng, X.: Antibacterial mechanism of plasma sprayed Ca2ZnSi2O7 coating against escherichia coli, J. Mater. Sci. Mater. M., 24, 171 – 178, doi:10.1007/s10856 – 012 – 4788-y, (2013).
186 Li, K. et al.: Chemical stability and antimicrobial activity of plasma sprayed bioactive Ca2ZnSi2O7 coating, J. Mater. Sci. Mater. M., 22, 2781 – 2789, doi:10.1007/s10856 – 011 – 4454 – 9, (2011).
187 Samani, S., Hossainalipour, S. M., Tamizifar, M., Rezaie, H.R.: In vitro antibacterial evaluation of sol-gel-derived Zn-, Ag-, and (Zn + Ag)-doped hydroxyapatite coatings against methicillin-resistant staphylococcus aureus, J. Biomed. Mater. Res.. A, 101, 222 – 230, doi:10.1002/jbm.a.34322, (2013).
188 Roohani – Esfahani, S.-I., Chen, Y., Shi, J., Zreiqat, H.: Fabrication and characterization of a new, strong and bioactive ceramic scaffold for bone regeneration, Mater. Lett., 107, 378 – 381, doi:http://dx.doi.org/10.1016/j.matlet.2013.06.046, (2013).
Copyright
Göller Verlag GmbH