• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Evaluating Porosity in Cordierite Diesel Particulate Filter Materials, Part 1 X-Ray Refraction

A. Kupsch, A. Lange, M.P. Hentschel, Y. Onel, T. Wolk, A. Staude, K. Ehrig, B. R. Müller, G. Bruno

BAM Federal Institute for Materials Research and Testing, D-12200 Berlin, Germany

received August 23, 2013, received in revised form October 18, 2013, accepted November 18, 2013

Vol. 4, No. 4, Pages 169-176   DOI: 10.4416/JCST2013-00021

Abstract

Bi-continuous porous ceramics for filtration applications possess a particularly complicated microstructure, with porosity and solid matter being intermingled. Mechanical, thermal, and filtration properties can only be precisely estimated if the morphology of both solid matter and porosity can be quantitatively determined. Using x-ray absorption and refraction, we quantitatively evaluate porosity and pore orientation in cordierite diesel particulate filter ceramics. Porosity values turn out to agree with mercury intrusion measurements, while pore orientation factors agree with published crystallographic texture data.

Download Full Article (PDF)

Keywords

Porous ceramics, pore orientation, x-ray refraction, synchrotron, interface.

References

1 Merkel, G., Tao, T.: Cordierite filters with reduced pressure drop. US patent 20040261384, (2006).

2 Readey, M.J., Rontanini, L.D.: Cordierite material useful in a heat source retainer and process for making the same. US Patent 4973566, (1990).

3 Saito, N., Nishimura, S.-Y., Kawano, M., Araki, S.-I., Sukenaga, S., Nakashima, K., Yasukouchi, T.: Fabrication of nitrogen-containing cordierite ceramics, J. Am. Ceram. Soc., 93, 2257 – 2263, (2010).

4 Bruno, G., Efremov, A.M., Clausen, B., Balagurov, A.M., Simkin, V.N., Wheaton, B.R., Webb, J.E., Brown, D.W.: On the stress-free lattice expansion of porous cordierite, Acta Mater., 58, 1994 – 2003, (2010).

5 Addiego, W.P., Melscoet-Chauvel, I.M.: High porosity cordierite ceramic article and method. US Patent 2007/0142208 A1, (2007).

6 Harada, T., Hamanaka, T., Hamaguchi, K., Asami, S.: Cordierite honeycomb-structural body and a method for producing the same. US Patent 4,869,944, (1989).

7 Bruno, G., Efremov, A.M., An, C.P., Wheaton, B.R., Hughes, D.J: Connecting the macro and microscopic strain response in porous ceramics. part II microcracking, J. Mater. Sci., 47, 3674 – 3689, (2012).

8 Bruno, G., Vogel, S., Calculation of the average coefficient of thermal expansion in oriented cordierite polycrystals, J. Am. Ceram. Soc., 91, 2646 – 2652, (2008).

9 Hasselmann, D.P.H.: Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics, J. Am. Ceram. Soc., 52, 600 – 604, (1969).

10 Gulati, S.: Thermal stresses in ceramic wall-flow diesel filters. SAE technical paper 830079, (1983).

11 Bruno, G., Efremov, A.M., Webb, J.E.: The correlation between the coefficient of thermal expansion and the lattice mechanical properties of aluminum titanate, Acta Mater., 58, 6649 – 6655, (2010).

12 Bruno, G., Garlea, V.O., Muth, J., Efremov, A.M., Watkins, T.J., Shyam, A.: Temperature dependent microstress evolution in microcracked β-eucryptite, Acta Mater., 60, 4982 – 4996, (2012).

13 Shyam, A., Lara-Curzio, E., Pandey, A., Watkins, T.R., More, K.L.: The thermal expansion, elastic and fracture properties of porous cordierite at elevated temperatures, J. Am. Ceram. Soc., 95, 1682 – 1691, (2012).

14 ASTM standard C1198 – 01: Standard test method for dynamic young's modulus, shear modulus and poisson's ratio for advanced ceramics by sonic resonance, (2001).

15 Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials, P. Roy.Soc. Lond. A Mat., 382, 43 – 59, (1982).

16 Bruno, G., Efremov, A.M., Levandovsky, A.N., Clausen, B.: Connecting the macro and microscopic strain response in porous ceramics: modeling and experimental validation, J. Mater. Sci., 46, 161 – 173, (2011).

17 Kachanov, M.: Effective elastic properties of cracked solids: a critical review of some basic concepts, Appl. Mech. Rev., 45, 304 – 335, (1992).

18 Kachanov, M.: Solids with cracks and non-spherical pores: proper parameters of defect density and effective elastic properties, Int. J. Fract., 97, 1 – 32, (1999).

19 Tandon, P., Heibel, A., Whitmore, J., Kekre, N., Chithapragada, K.: Measurement and prediction of filtration efficiency evolution of soot loaded diesel particulate filters, Chem. Eng. Sci., 65, 4751 – 4760, (2010).

20 Yang, J., Stewart, M., Maupin, G., Herling, D., Zelenyuk, A.: Single-wall diesel particulate filter (DPF) filtration efficiency studies using laboratory generated particles, Chem. Eng. Sci., 64, 1625 – 1634, (2009).

21 Andersson, L., Larsson, P.T., WÃ¥gberg, L., Bergström, L.: Evaluating pore space in macroporous ceramics with water-based porosimetry, J. Am. Ceram. Soc., 96, 1916 – 1922, (2013).

22 Lucas, R.: The time law of the capillary rise of liquids, (in German), Kolloid Z., 23, 15 – 22, (1918).

23 Washburn, E.W.: The dynamics of capillary flow, Phys. Rev., 17, 273 – 283, (1921).

24 Hentschel, M.P., Hosemann, R., Lange, A., Uther, B., Small angle x-ray refraction at metal wires, glass fibers and hard elastic polypropylene, (in German), Acta Cryst. A, 43, 506 – 513, (1987).

25 Tzschichholz, G., Steinborn, G., Hentschel, M.P., Lange, A., Klobes, P.: Characterisation of porous titania yttrium oxide compounds by mercury intrusion porosimetry and x-ray refractometry, J. Porous Mat., 18, 83 – 88, (2011).

26 Silva, F.A., Williams, J.J., Müller, B.R., Hentschel, M.P., Portella, P.D., Chawla, N.: Three-dimensional microstructure visualization of porosity and Fe-rich inclusions in SiC particle-reinforced al alloy matrix composites by x-ray synchrotron tomography, Metall. Mater. Trans. A, 41, 2121 – 2128, (2010).

27 Shyam, A., Pandey, A., Bruno, G., Watkins, T.R., Lara-Curzion, E., Parten, R., Stafford. R.: In preparation (2013)

28 Pomeroy, M.J., O'Sullivan, D., Hampshire, S., Murtagh, M.J.: Degradation resistance of cordierite diesel particulate filters to diesel fuel ash deposits, J. Am. Ceram. Soc., 95, 746 – 753, (2012).

29 Bruno, G., Efremov, A.M., An, C.P., Nickerson, S.T.: Not all microcracks are born equal: thermal vs. mechanical microcracking in porous ceramics, In Widjaja, S., Singh, D. (Eds): Advances in bioceramics and porous ceramics IV - Ceramic engineering & science proceedings, 32, 137 – 152, (2011).

30 Bruno, G., Pozdnyakova, I., Efremov, A.M., Levandovskyi, A.N., Clausen, B., Hughes, D.J.: Thermal and mechanical response of industrial porous ceramics, Mater. Sci. Forum, 652, 191 – 196, (2010).

31 Bruno, G., Kilali, Y., Efremov, A.M:. Impact of the non-linear character of the compressive stress-strain curves on thermal and mechanical properties of porous microcracked ceramics, J. Eur. Ceram. Soc., 33, 211 – 219, (2013).

32 Bruno, G., Kachanov, M.: On modeling of microstresses and microcracking generated by cooling of polycrystalline porous ceramics, J. Eur. Ceram. Soc., 33, 1995 – 2005, (2013).

33 Glatter, O., Kratky, O.: Small angle x-ray scattering. Academic Press, London, 1982.

34 Harbich, K.-W., Klobes, P., Hentschel, M.P.: Microstructural characterization of porous materials by two-dimensional x-ray refraction topography, Colloid. Surface A, 241, 225 – 229, (2004).

35 Müller, B.R., Lange, A., Harwardt, M., Hentschel, M.P., Illerhaus, B., Goebbels, J., Bamberg, J., Heutling, F.: Refraction computed tomography, MP Mater. Test., 46, 314 – 319, (2004).

36 Hentschel, M.P, Lange, A., Müller, B.R., Schors, J., Harbich, K.W.: x-ray refraction computer-tomography, (in German), Materialprüfung, 42, 217 – 221, (2000).

37 Chapman, D., Thomlinson, W., Johnston, R.E., Washburn, D., Pisano, E., Gmür, N., Zhong, Z., Menk, R., Arfelli, F., Sayers, D.: Diffraction enhanced x-ray imaging, Phys. Med. Biol., 42, 2015 – 2025, (1997).

38 Pfeiffer, F., Weitkamp, T., Bunk, O., David, C.: Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources, Nature Phys., 2, 258 – 261, (2006).

39 Ando, M., Maksimenko, A., Sugiyama, H., Pattanasiriwisawa, W., Hyodo, K., Uyama, C.: A simple X ray dark- and bright-field imaging using achromatic laue optics, Jpn. J. Appl. Phys., Part 1, 41, L1016 – L1018, (2002).

40 Strobl, M., Kardjilov, N., Hilger, A., Kühne, G., Frei, G., Manke, I.: High-resolution investigations of edge effects in neutron imaging, Nucl. Instrum. Meth. A., 604, 640 – 645, (2009).

41 Strobl, M., Hilger, A., Kardjilov, N., Ebrahimi, O., Keil, S., Manke, I.: Differential phase contrast and dark field neutron imaging, Nucl. Instrum. Meth. A., 605, 9 – 12, (2009).

42 Manke, I., Kardjilov, N., Schäfer, R., Hilger, A., Strobl, M., Dawson, M., Grünzweig, C., Behr, G., Hentschel, M., David, C., Kupsch, A., Lange, A., Banhart, J.: Three-dimensional imaging of magnetic domains, Nature Commun., 1, 125, (2010).

43 Lange, A., Hentschel, M.P., Kupsch, A., Müller, B.R.: Numerical correction of x-ray detector backlighting, Int. J. Mat. Res., 103, 174 – 178, (2012).

44 Kupsch, A., Hentschel, M.P., Lange, A., Müller, B.R.: How to correct x-ray detector backlighting, (in German), MP Mater. Test., 55, 577 – 581, (2013).

45 Lange, A., Hentschel, M.P., Kupsch, A: Computed tomographic reconstruction with DIRECTT, (in German), MP Mater. Test., 50, 272 – 277, (2008).

46 Kupsch, A., Lange, A., Hentschel, M.P., Müller, B.R.: Improved computed tomography by variable desmearing, MP Mater. Test., 52, 394 – 400, (2010).

47 Lange, A., Kupsch, A., Hentschel, M.P, Manke, I., Kardjilov, N., Arlt, T., Grothausmann, R.: Reconstruction of limited computed tomography data of fuel cell components using direct iterative reconstruction of computed tomography trajectories, J. Power Sources, 196, 5293 – 5298, (2011).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH