Articles
All articles | Recent articles
Evaluating Porosity in Cordierite Diesel Particulate Filter Materials, Part 1 X-Ray Refraction
A. Kupsch, A. Lange, M.P. Hentschel, Y. Onel, T. Wolk, A. Staude, K. Ehrig, B. R. Müller, G. Bruno
BAM Federal Institute for Materials Research and Testing, D-12200 Berlin, Germany
received August 23, 2013, received in revised form October 18, 2013, accepted November 18, 2013
Vol. 4, No. 4, Pages 169-176 DOI: 10.4416/JCST2013-00021
Abstract
Bi-continuous porous ceramics for filtration applications possess a particularly complicated microstructure, with porosity and solid matter being intermingled. Mechanical, thermal, and filtration properties can only be precisely estimated if the morphology of both solid matter and porosity can be quantitatively determined. Using x-ray absorption and refraction, we quantitatively evaluate porosity and pore orientation in cordierite diesel particulate filter ceramics. Porosity values turn out to agree with mercury intrusion measurements, while pore orientation factors agree with published crystallographic texture data.
Download Full Article (PDF)
Keywords
Porous ceramics, pore orientation, x-ray refraction, synchrotron, interface.
References
1 Merkel, G., Tao, T.: Cordierite filters with reduced pressure drop. US patent 20040261384, (2006).
2 Readey, M.J., Rontanini, L.D.: Cordierite material useful in a heat source retainer and process for making the same. US Patent 4973566, (1990).
3 Saito, N., Nishimura, S.-Y., Kawano, M., Araki, S.-I., Sukenaga, S., Nakashima, K., Yasukouchi, T.: Fabrication of nitrogen-containing cordierite ceramics, J. Am. Ceram. Soc., 93, 2257 – 2263, (2010).
4 Bruno, G., Efremov, A.M., Clausen, B., Balagurov, A.M., Simkin, V.N., Wheaton, B.R., Webb, J.E., Brown, D.W.: On the stress-free lattice expansion of porous cordierite, Acta Mater., 58, 1994 – 2003, (2010).
5 Addiego, W.P., Melscoet-Chauvel, I.M.: High porosity cordierite ceramic article and method. US Patent 2007/0142208 A1, (2007).
6 Harada, T., Hamanaka, T., Hamaguchi, K., Asami, S.: Cordierite honeycomb-structural body and a method for producing the same. US Patent 4,869,944, (1989).
7 Bruno, G., Efremov, A.M., An, C.P., Wheaton, B.R., Hughes, D.J: Connecting the macro and microscopic strain response in porous ceramics. part II microcracking, J. Mater. Sci., 47, 3674 – 3689, (2012).
8 Bruno, G., Vogel, S., Calculation of the average coefficient of thermal expansion in oriented cordierite polycrystals, J. Am. Ceram. Soc., 91, 2646 – 2652, (2008).
9 Hasselmann, D.P.H.: Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics, J. Am. Ceram. Soc., 52, 600 – 604, (1969).
10 Gulati, S.: Thermal stresses in ceramic wall-flow diesel filters. SAE technical paper 830079, (1983).
11 Bruno, G., Efremov, A.M., Webb, J.E.: The correlation between the coefficient of thermal expansion and the lattice mechanical properties of aluminum titanate, Acta Mater., 58, 6649 – 6655, (2010).
12 Bruno, G., Garlea, V.O., Muth, J., Efremov, A.M., Watkins, T.J., Shyam, A.: Temperature dependent microstress evolution in microcracked β-eucryptite, Acta Mater., 60, 4982 – 4996, (2012).
13 Shyam, A., Lara-Curzio, E., Pandey, A., Watkins, T.R., More, K.L.: The thermal expansion, elastic and fracture properties of porous cordierite at elevated temperatures, J. Am. Ceram. Soc., 95, 1682 – 1691, (2012).
14 ASTM standard C1198 – 01: Standard test method for dynamic young's modulus, shear modulus and poisson's ratio for advanced ceramics by sonic resonance, (2001).
15 Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials, P. Roy.Soc. Lond. A Mat., 382, 43 – 59, (1982).
16 Bruno, G., Efremov, A.M., Levandovsky, A.N., Clausen, B.: Connecting the macro and microscopic strain response in porous ceramics: modeling and experimental validation, J. Mater. Sci., 46, 161 – 173, (2011).
17 Kachanov, M.: Effective elastic properties of cracked solids: a critical review of some basic concepts, Appl. Mech. Rev., 45, 304 – 335, (1992).
18 Kachanov, M.: Solids with cracks and non-spherical pores: proper parameters of defect density and effective elastic properties, Int. J. Fract., 97, 1 – 32, (1999).
19 Tandon, P., Heibel, A., Whitmore, J., Kekre, N., Chithapragada, K.: Measurement and prediction of filtration efficiency evolution of soot loaded diesel particulate filters, Chem. Eng. Sci., 65, 4751 – 4760, (2010).
20 Yang, J., Stewart, M., Maupin, G., Herling, D., Zelenyuk, A.: Single-wall diesel particulate filter (DPF) filtration efficiency studies using laboratory generated particles, Chem. Eng. Sci., 64, 1625 – 1634, (2009).
21 Andersson, L., Larsson, P.T., WÃ¥gberg, L., Bergström, L.: Evaluating pore space in macroporous ceramics with water-based porosimetry, J. Am. Ceram. Soc., 96, 1916 – 1922, (2013).
22 Lucas, R.: The time law of the capillary rise of liquids, (in German), Kolloid Z., 23, 15 – 22, (1918).
23 Washburn, E.W.: The dynamics of capillary flow, Phys. Rev., 17, 273 – 283, (1921).
24 Hentschel, M.P., Hosemann, R., Lange, A., Uther, B., Small angle x-ray refraction at metal wires, glass fibers and hard elastic polypropylene, (in German), Acta Cryst. A, 43, 506 – 513, (1987).
25 Tzschichholz, G., Steinborn, G., Hentschel, M.P., Lange, A., Klobes, P.: Characterisation of porous titania yttrium oxide compounds by mercury intrusion porosimetry and x-ray refractometry, J. Porous Mat., 18, 83 – 88, (2011).
26 Silva, F.A., Williams, J.J., Müller, B.R., Hentschel, M.P., Portella, P.D., Chawla, N.: Three-dimensional microstructure visualization of porosity and Fe-rich inclusions in SiC particle-reinforced al alloy matrix composites by x-ray synchrotron tomography, Metall. Mater. Trans. A, 41, 2121 – 2128, (2010).
27 Shyam, A., Pandey, A., Bruno, G., Watkins, T.R., Lara-Curzion, E., Parten, R., Stafford. R.: In preparation (2013)
28 Pomeroy, M.J., O'Sullivan, D., Hampshire, S., Murtagh, M.J.: Degradation resistance of cordierite diesel particulate filters to diesel fuel ash deposits, J. Am. Ceram. Soc., 95, 746 – 753, (2012).
29 Bruno, G., Efremov, A.M., An, C.P., Nickerson, S.T.: Not all microcracks are born equal: thermal vs. mechanical microcracking in porous ceramics, In Widjaja, S., Singh, D. (Eds): Advances in bioceramics and porous ceramics IV - Ceramic engineering & science proceedings, 32, 137 – 152, (2011).
30 Bruno, G., Pozdnyakova, I., Efremov, A.M., Levandovskyi, A.N., Clausen, B., Hughes, D.J.: Thermal and mechanical response of industrial porous ceramics, Mater. Sci. Forum, 652, 191 – 196, (2010).
31 Bruno, G., Kilali, Y., Efremov, A.M:. Impact of the non-linear character of the compressive stress-strain curves on thermal and mechanical properties of porous microcracked ceramics, J. Eur. Ceram. Soc., 33, 211 – 219, (2013).
32 Bruno, G., Kachanov, M.: On modeling of microstresses and microcracking generated by cooling of polycrystalline porous ceramics, J. Eur. Ceram. Soc., 33, 1995 – 2005, (2013).
33 Glatter, O., Kratky, O.: Small angle x-ray scattering. Academic Press, London, 1982.
34 Harbich, K.-W., Klobes, P., Hentschel, M.P.: Microstructural characterization of porous materials by two-dimensional x-ray refraction topography, Colloid. Surface A, 241, 225 – 229, (2004).
35 Müller, B.R., Lange, A., Harwardt, M., Hentschel, M.P., Illerhaus, B., Goebbels, J., Bamberg, J., Heutling, F.: Refraction computed tomography, MP Mater. Test., 46, 314 – 319, (2004).
36 Hentschel, M.P, Lange, A., Müller, B.R., Schors, J., Harbich, K.W.: x-ray refraction computer-tomography, (in German), Materialprüfung, 42, 217 – 221, (2000).
37 Chapman, D., Thomlinson, W., Johnston, R.E., Washburn, D., Pisano, E., Gmür, N., Zhong, Z., Menk, R., Arfelli, F., Sayers, D.: Diffraction enhanced x-ray imaging, Phys. Med. Biol., 42, 2015 – 2025, (1997).
38 Pfeiffer, F., Weitkamp, T., Bunk, O., David, C.: Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources, Nature Phys., 2, 258 – 261, (2006).
39 Ando, M., Maksimenko, A., Sugiyama, H., Pattanasiriwisawa, W., Hyodo, K., Uyama, C.: A simple X ray dark- and bright-field imaging using achromatic laue optics, Jpn. J. Appl. Phys., Part 1, 41, L1016 – L1018, (2002).
40 Strobl, M., Kardjilov, N., Hilger, A., Kühne, G., Frei, G., Manke, I.: High-resolution investigations of edge effects in neutron imaging, Nucl. Instrum. Meth. A., 604, 640 – 645, (2009).
41 Strobl, M., Hilger, A., Kardjilov, N., Ebrahimi, O., Keil, S., Manke, I.: Differential phase contrast and dark field neutron imaging, Nucl. Instrum. Meth. A., 605, 9 – 12, (2009).
42 Manke, I., Kardjilov, N., Schäfer, R., Hilger, A., Strobl, M., Dawson, M., Grünzweig, C., Behr, G., Hentschel, M., David, C., Kupsch, A., Lange, A., Banhart, J.: Three-dimensional imaging of magnetic domains, Nature Commun., 1, 125, (2010).
43 Lange, A., Hentschel, M.P., Kupsch, A., Müller, B.R.: Numerical correction of x-ray detector backlighting, Int. J. Mat. Res., 103, 174 – 178, (2012).
44 Kupsch, A., Hentschel, M.P., Lange, A., Müller, B.R.: How to correct x-ray detector backlighting, (in German), MP Mater. Test., 55, 577 – 581, (2013).
45 Lange, A., Hentschel, M.P., Kupsch, A: Computed tomographic reconstruction with DIRECTT, (in German), MP Mater. Test., 50, 272 – 277, (2008).
46 Kupsch, A., Lange, A., Hentschel, M.P., Müller, B.R.: Improved computed tomography by variable desmearing, MP Mater. Test., 52, 394 – 400, (2010).
47 Lange, A., Kupsch, A., Hentschel, M.P, Manke, I., Kardjilov, N., Arlt, T., Grothausmann, R.: Reconstruction of limited computed tomography data of fuel cell components using direct iterative reconstruction of computed tomography trajectories, J. Power Sources, 196, 5293 – 5298, (2011).
Copyright
Göller Verlag GmbH