• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Electrical Resistivity of Si3N4-SiC-MeSi2 (Me = Nb, Mo, W, Zr) Composites

E. Zschippang1, H. Klemm1, M. Herrmann1, S. Höhn1, B. Matthey1, U. Guth2, A. Michaelis1

1 Fraunhofer Institute for Ceramic Technologies and Systems, Winterbergstraße 28, D-01277, Dresden, Germany
2 Kurt-Schwabe-Institute for Measuring and Sensor Technology Meinsberg, D- 04720 Ziegra-Knobelsdorf, Germany

received April 15, 2013, received in revised form June 14, 2013, accepted June 28, 2013

Vol. 4, No. 4, Pages 197-206   DOI: 10.4416/JCST2013-00012

Abstract

Si3N4-SiC and Si3N4-SiC-MeSi2 (Me = Nb, Mo, W, Zr) composites were densified by means of hot pressing at 1840 °C. Additional heat treatment was performed at 1900 °C in a gas pressure furnace at 1900 °C. The hot-pressed and heat-treated composites were investigated with X-ray diffraction, scanning electron microscopy and measurements of their electrical resistivity. The electrical resistivity of the hot-pressed Si3N4-SiC composite was about 104 Ωcm. The addition of silicides yielded a decrease in composite resistivity to values of about 101-10-2 Ωcm. The subsequent heat treatment results in a further decrease of the resistivity by at least one order of magnitude for all composites. An α → β transformation in SiC was detected in the Si3N4-SiC-MeSi2 composites with XRD and electron backscatter diffraction (EBSD) analysis. The α → β transformation in SiC was strongly associated with a high-nitrogen doping concentration of the SiC grains, resulting in lower electrical resistivity of the Si3N4-SiC-MeSi2 composites in comparison with the Si3N4-SiC composite. Differences in the solution-precipitation process of SiC have been claimed as a reason for the highly doped SiC grains in the Si3N4-SiC-MeSi2 composites.

Download Full Article (PDF)

Keywords

Electrical resistivity, silicon nitride, silicon carbide, α → β transformation, composite

References

1 Klemm, H.: Silicon nitride for high-temperature applications, J. Am. Ceram. Soc., 93, 1501 – 1522, (2010).

2 Manukyan, K.V., Kharatyan, S.L., Blugan, G., Kocher, P., Kuebler, J.: MoSi2-Si3N4 Composites: influence of starting materials and fabrication route on electrical and mechanical properties, J. Eur. Ceram. Soc., 29, 2053 – 2060, (2009).

3 Kao, M.Y.: Properties of silicon nitride-molybdenum disilicide particulate ceramic composites. J. Am. Ceram. Soc., 76, 2879 – 2883, (1993).

4 Guo, Z.Q., Blugan, G., Grauble, T., Reece, M., Kuebler, J.: The effect of different sintering additives on the electrical and oxidation properties of Si3N4-MoSi2 composites. J. Eur. Ceram. Soc., 27, 2153 – 2161, (2007).

5 Holleck, H.: Material selection for hard coatings, J. Vac. Sci. Technol., A4, 2661 – 2669, (1986).

6 Neshpor, V.S., Reznichenko, M.I.: Investigating the thermal expansion of some silicides, Refractories, 4, 145 – 148, (1963).

7 Klemm, H., Bales, A., Martin, H.P., Herrmann, M.: Electrically conductive ceramic composite (in German). DE 102006062371A1, (2006).

8 Sawaguchi, A., Toda, K.: Mechanical and electrical-properties of silicon-nitride silicon-carbide nanocomposite material, J. Am. Ceram. Soc., 74,1142 – 1144, (1991).

9 Yamada, K., Kamiya, N.: High temperature mechanical properties of Si3N4-MoSi2 and Si3N4-SiC composites with network structures of second phases, Mat. Sci. Eng. A-Struct., 261, 270 – 277, (1999).

10 Heuberger, M., Kuntz, M., Nass, R.: Silicon carbide element (in German), DE 19956767A1, (2001).

11 Willkens, C.A., Bateman, L.S.: Composition for small ceramic ignitors. US 005514630A, (1996).

12 Shor, J.S., Goldstein, D., Kurtz, A.D.: Characterization of n-type beta-SiC as a piezoresistor, IEEE T. Electron Dev., 40, 1093 – 1099 (1993).

13 Casady, J.B., Johnson, R.W.: Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high temperature applications: A review, Solid-State Electronics, 39, 1409 – 1422, (1996).

14 Rost, H.J., Schulz, D., Siche, D.: High Nitrogen Doping During Bulk Growth of SiC. In: Silicon Carbide – Recent Major Advances. Springer-Verlag, Berlin Heidelberg New York, Germany, 2004.

15 Da Silva, A.F., Pernot, J., Contreras, S., Sernelius, B.E., Persson, C., Camassel, J.: Electrical resistivity and metal-nonmetal transition in n-type doped 4H-SiC, Phys. Rev. B, 74, 245201, (2006).

16 Alexander, M.N., Holcomb, D.F.: Semiconductor-to-metal transition in n-type group IV semiconductors, Rev. Mod. Phys., 40, 815 – 829, (1968).

17 Siegelin, F., Kleebe, H.J., Sigl, L.S.: Interface characteristics affecting electrical properties of Y-doped SiC, J. Mater. Res., 18, 2608 – 2617, (2003).

18 Kleebe, H.J., Siegelin, F.: Schottky barrier formation in liquid-phase-sintered silicon carbide, Z. Metallkd., 94, 211 – 217, (2003).

19 Kobayashi, R., Tatami, J., Wakihara, T., Komeya, K., Meguro, T., Tu, R., Goto, T.: Evaluation of grain-boundary conduction of dense AlN-SiC solid solution by scanning nonlinear dielectric microscopy, J. Am. Ceram. Soc., 93, 4026 – 4029, (2010).

20 Kondo, A.: Electrical conduction mechanism in recrystallized SiC, J. Ceram. Soc. Jpn., 100, 1225 – 1229, (1992).

21 Schroeder, A., Pelster, R., Grunow, V., Lennartz, W., Nimtz. G., Friederich. K.: Charge transport in silicon carbide: atomic and microscopic effects, J. Appl. Phys., 80, 2260 – 2268, (1996).

22 Clarke, D.R.: Varistor ceramics, J. Am. Ceram. Soc., 82, 485 – 502, (1999).

23 Pike, G.E.: Semiconducting polycrystalline ceramics. In: Materials Science and Technology. Wiley-VCH Verlag, 1994.

24 Haluschka, C., Engel, C, Riedel, R.: Silicon carbonitride ceramics derived from polysilazanes Part II. Investigation of electrical properties, J. Eur. Ceram. Soc., 20, 1365 – 1374, (2000).

25 Hebsur, M.G.: Development and characterization of SiC(f)/MoSi2-Si3N4(p) hybrid composites, Mater. Sci. Eng., A, 261, 24 – 37, (1999)

26 Samsonov, G.V: Handbook of refractory compounds. IFI/Plenum, New York, 1980.

27 Zschippang, E., Klemm, H., Herrmann, M., Sempf, K., Guth, U., Michaelis, A.: Electrical resistivity of silicon nitride – silicon carbide based ternary composites, J. Eur. Ceram. Soc., 32, 157 – 165, (2012).

28 Jeon, Y.S., Shin, H., Lee, Y.H., Kang, S.W.: Reduced electrical resistivity of reaction-sintered SiC by nitrogen doping, J. Mater. Res., 23, 1020 – 1025, (2008).

29 Jepps, N.W., Page, T.F.: The 6H-3C "Reverse" transformation in silicon carbide compacts, J. Am. Ceram. Soc., 64, C177 – C178, (1981).

30 Gnesin, G.G.: Karbidokremnievye materialy. Metallurgija, Moscow, 1977.

31 Ihle, J., Martin, H.P., Herrmann, M., Obenaus, P., Adler, J., Hermel, W., Michaelis, A.: The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide, Int. J. Mater. Res., 97, 649 – 656, (2006).

32 Thorp, J.S., Sharif, R.I.: D.C. electrical properties of hot-pressed nitrogen ceramics, J. Mater. Sci., 13, 441 – 449, (1978).

33 Can, A.: Densification, microstructure and properties of liquid-phase sintered silicon carbide materials [PhD-Thesis]. University of Witwatersrand, Johannesburg, 2004.

34 Dietrich, I.: Measurement of the resistance of thin insulating layers between gold contacts in the range of the tunnel effect, (in German), Zeitschrift für Phys. A Hadron Nucl., 132, 231 – 238, (1952).

35 Kleebe, H.J.: Comparison between SEM and TEM imaging techniques to determine grain-boundary wetting in ceramic polycrystals, J. Am. Ceram. Soc., 85, 43 – 48, (2002).

36 Moberlychan, W.J., De Jonghe, L.C.: Controlling interface chemistry and structure to process and toughen silicon carbide, Acta Mater., 46, 2471 – 2477, (1998).

37 Pezzotti, G., Kleebe, H.-J., Ota, K.: Grain boundary viscosity of polycrystalline silicon carbides, J. Am. Ceram. Soc., 81, 3293 – 3299, (1998).

38 Tian, Z., Quick, N.R., Kar, A.: Laser-enhanced diffusion of nitrogen and aluminum dopants in silicon carbide, Acta Mater., 54, 4273 – 4283, (2006).

39 Kroko, L.J., Milnes, A.G.: Diffusion of nitrogen into silicon carbide single crystals doped with aluminium, Solid-State Electronics, 9, 1125 – 1134, (1966).

40 Dalaker, H., Tangstad, M.: Temperature dependence of the solubility of nitrogen in liquid silicon equilibrated with silicon nitride, Mater. T. JIM, 50, 2541 – 2544, (2009).

41 Narushima, T., Ueda, N., Takeuchi, M., Ishii, F., Iguchi, Y.: Nitrogen solubility in liquid silicon, Mater. T. JIM, 35, 821 – 826, (1994).

42 Herrmann, M., Goeb, O.: Colour of gas-pressure-sintered silicon nitride ceramics, part II. thermodynamic considerations, J. Eur. Ceram. Soc., 21, 461 – 469, (2001).

43 Kuhr, T.A., Liu, J., Chung, H.J., Skowronski, M., Szmulowicz, F.: Spontaneous formation of stacking faults in highly doped 4H-SiC during annealing, J. Appl. Phys., 92, 5863 – 5871, (2002).

44 Alexander, M.N.: Nuclear-Magnetic-Resonance study of heavily nitrogen-doped silicon carbide, Phys. Rev., 172, 331 – 340, (1968).

45 Kim, K.J., Lim, K.Y., Kim, Y.W.: Effective nitrogen doping for fabricating highly conductive b-SiC ceramics, J. Am. Ceram. Soc., 94, 3216 – 3219, (2011).

46 Villars, P., Okamoto, H., Cenzual, K.: A-B-C phase diagram, ASM Alloy Phase Diagrams Center, ASM International, Materials Park. http://www1.asminternational.org/AsmEnterprise/APD 2006.

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH