Articles
All articles | Recent articles
Development of a Miniaturized Ceramic Differential Calorimeter Device in LTCC Technology
J. Kita1, W. Missal1, E. Wappler2, F. Bechtold3, R. Moos1
1 University of Bayreuth, Department of Functional Materials, 95440 Bayreuth, Germany
2 wsk Mess- und Datentechnik GmbH, Güterbahnhofstr. 1, 63450 Hanau, Germany
3 via electronic GmbH, Robert-Friese-Str. 3, 07629 Hermsdorf, Germany
received March 18, 2013, received in revised form April 30, 2013, accepted May 29, 2013
Vol. 4, No. 3, Pages 137-144 DOI: 10.4416/JCST2013-00008
Abstract
Differential Scanning Calorimetry (DSC) is used to identify phase transition temperatures of different materials. Classical DSC devices are designed as stationary equipment and, owing to their weight and construction, mobile use is impossible. Relatively high costs may limit the span of application. To reduce costs and enable mobile applications, our idea was to construct a miniaturized ceramic differential scanning calorimeter in which furnace, temperature sensors, crucible, and reference are fully integrated into one single ceramic device measuring only a few centimetres in size.
In this article, two types of miniaturized ceramic calorimeters are presented. Whereas the first one is based on the power compensation method, the second utilizes the dynamic heat flux method. Both structures were made in Low Temperature Co-Fired Ceramics (LTCC) Technology. Application of ceramics as body material ensures sufficient stability and a wide working temperature range. First tests proved that melting processes with promising dynamic performance can be detected. This article focuses on the development steps that lead to novel well-functioning LTCC-based DSC devices and demonstrate their functionality. It is also intended to show some deadlocks during the development and demonstrate how important FEM modeling is for obtaining well-functioning devices.
Download Full Article (PDF)
Keywords
DSC, LTCC, differential scanning calorimetry
References
1 van Dooren, A.A., Müller, B.W.: Purity determinations of drugs with differential scanning calorimetry (DSC) – a critical review, Int. J. Pharm., 20, 217 – 233, (1984).
2 Biliaderis, C.G.: Differential scanning calorimetry in food research – A review, Food Chem., 10, 239 – 265, (1994).
3 Malecha, K., Pijanowska, D.G., Golonka, L.J., Torbicz, W.: LTCC microreactor for urea determination in biological fluids, Sensor. Actuat. B-Chem., 141, 301 – 308, (2009).
4 Birol, H., Maeder, T., Nadzeyka, I., Boers, M., Ryser, P.: Fabrication of a millinewton force sensor using low temperature co-fired ceramic (LTCC) technology, Sensor. Actuat. A: Phys., 134, 334 – 338, (2007).
5 Fournier, Y., Boutinard Rouelle, G., Craquelin, N., Maeder, T., Ryser, P.: SMD pressure and flow sensor for compressed air in LTCC technology with integrated electronics, Procedia Chemistry, 1, 1471 – 1474, (2009), doi:10.1016/j.proche.2009.07.367.
6 Hrovat, M., Belavic, D., Kita, J., Cilensek, J., Golonka, L., Dziedzic, A.: Thick-film temperature sensors on alumina and LTCC substrates, J. Eur. Ceram. Soc., 25, 3443 – 3450, (2005).
7 Gongora-Rubio, M.R., Espinoza-Vallejos, P., Sola-Laguna, L., Santiago-Avilés, J.J.: Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST), Sensor. Actuat. A: Phys., 89, 222 – 241, (2001).
8 Bartsch de Torres, H., Rensch, C., Fischer, M., Schober, A., Hoffmann, M., Müller, J.: Thick film flow sensor for biological microsystems, Sensor. Actuat. A: Phys., 160, 109 – 115, (2010).
9 Schmid, U.: A robust flow sensor for high pressure automotive applications, Sensor. Actuat. A: Phys., 97 – 98, 253 – 263, (2002).
10 Smetana, W., Unger, M.: Design and characterization of a humidity sensor realized in LTCC-technology, Microsyst. Technol., 14, 979 – 987, (2008).
11 Achmann, S., Hämmerle, M., Kita, J., Moos, R.: Miniaturized low temperature co-fired ceramics (LTCC) biosensor for amperometric gas sensing, Sensor. Actuat. B.-Chem., 135, 89 – 95, (2008).
12 Gómez-de Pedro, S., Puyol, M., Izquierdo, D., Salinas, I., de la Fuente, J.M., Alonso-Chamarro, J.: A ceramic microreactor for the synthesis of water soluble CdS and CdS/ZnS nanocrystals with on-line optical characterization, Nanoscale, 4, 1328 – 1335, (2012).
13 Nowak, D., Dziedzic, A.: LTCC package for high temperature applications, Microelectron. Reliab., 51, 1241 – 1244, (2011).
14 Teterycz, H., Kita, J., Bauer, R., Golonka, L.J., Licznerski, B.W., Nitsch, K., Winiewski, K.: New design of an SnO2 gas sensor on low temperature cofiring ceramics, Sensor. Actuat. B.-Chem., 47, 100 – 103, (1998).
15 Rettig, F., Moos, R.: Ceramic meso hot-plates for gas sensors, Sensor. Actuat. B.-Chem., 103, 91 – 97, (2004).
16 Kita, J., Rettig, F., Moos, R., Drüe, K.-H., Thust, H.: Hot plate gas sensors – are ceramics Better?, Int. J. Appl. Ceram. Tec., 2, 383 – 389, (2005).
17 Kita, J., Moos, R.: Development of LTCC-materials and their applications – an overview, Inform. MIDEM, 38, 219 – 224, (2008).
18 Wagner, M., Roosen A.: Low temperature co-fired ceramics (LTCC): Multilayer ceramics for microelectronic applications (in German), Handbuch Technische Keramische Werkstoffe, HvB-Verlag, Ellerau, Chap. 3.6.1.2., 1 – 34, (2002).
19 Imanaka, Y.: Multilayered low temperature cofired ceramics (LTCC) technology, Springer, New York, ISBN 978 – 0-387 – 23314 – 7, (2005), doi: 10.1007/b101196.
20 Hemminger, W.F., Cammenga, H.K: Methoden der thermischen analyse, Springer, Berlin (1989) (in German)
21 Ehrenstein, G.W., Riedel, G., Trawiel, P.: Thermal analysis of plastics, Hanser Verlag, Munich, (2004).
22 Industrial platinum resistance thermometers and platinum temperature sensors, Industrial Standard IEC 60751:2008; German version EN 60751:2008
23 Kita, J., Moos, R.: Properties and applications of zero-shrinkage LTCC, Proc. XXXIII International Conference of IMAPS - CPMT IEEE Poland, Pszczyna 21 – 24 September 2009, 183 – 189
24 Missal, W., Kita, J., Wappler, E., Gora, F., Kipka, A., Bartnitzek, T., Bechtold, F., Schabbel, D., Pawlowski, B., Moos, R.: Miniaturized ceramic differential scanning calorimeter with integrated oven and crucible in LTCC technology, Sensor. Actuat. A-Phys., 172, 21 – 26, (2011).
25 Missal, W., Kita, J., Wappler, E., Bechtold, F., Moos, R.: Calorimetric sensitivity and thermal resolution of a novel miniaturized ceramic DSC chip in LTCC technology, Thermochim. Acta, 543, 142 – 149, (2012).
Copyright
Göller Verlag GmbH