• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Development of a Miniaturized Ceramic Differential Calorimeter Device in LTCC Technology

J. Kita1, W. Missal1, E. Wappler2, F. Bechtold3, R. Moos1

1 University of Bayreuth, Department of Functional Materials, 95440 Bayreuth, Germany
2 wsk Mess- und Datentechnik GmbH, Güterbahnhofstr. 1, 63450 Hanau, Germany
3 via electronic GmbH, Robert-Friese-Str. 3, 07629 Hermsdorf, Germany

received March 18, 2013, received in revised form April 30, 2013, accepted May 29, 2013

Vol. 4, No. 3, Pages 137-144   DOI: 10.4416/JCST2013-00008

Abstract

Differential Scanning Calorimetry (DSC) is used to identify phase transition temperatures of different materials. Classical DSC devices are designed as stationary equipment and, owing to their weight and construction, mobile use is impossible. Relatively high costs may limit the span of application. To reduce costs and enable mobile applications, our idea was to construct a miniaturized ceramic differential scanning calorimeter in which furnace, temperature sensors, crucible, and reference are fully integrated into one single ceramic device measuring only a few centimetres in size.

In this article, two types of miniaturized ceramic calorimeters are presented. Whereas the first one is based on the power compensation method, the second utilizes the dynamic heat flux method. Both structures were made in Low Temperature Co-Fired Ceramics (LTCC) Technology. Application of ceramics as body material ensures sufficient stability and a wide working temperature range. First tests proved that melting processes with promising dynamic performance can be detected. This article focuses on the development steps that lead to novel well-functioning LTCC-based DSC devices and demonstrate their functionality. It is also intended to show some deadlocks during the development and demonstrate how important FEM modeling is for obtaining well-functioning devices.

Download Full Article (PDF)

Keywords

DSC, LTCC, differential scanning calorimetry

References

1 van Dooren, A.A., Müller, B.W.: Purity determinations of drugs with differential scanning calorimetry (DSC) – a critical review, Int. J. Pharm., 20, 217 – 233, (1984).

2 Biliaderis, C.G.: Differential scanning calorimetry in food research – A review, Food Chem., 10, 239 – 265, (1994).

3 Malecha, K., Pijanowska, D.G., Golonka, L.J., Torbicz, W.: LTCC microreactor for urea determination in biological fluids, Sensor. Actuat. B-Chem., 141, 301 – 308, (2009).

4 Birol, H., Maeder, T., Nadzeyka, I., Boers, M., Ryser, P.: Fabrication of a millinewton force sensor using low temperature co-fired ceramic (LTCC) technology, Sensor. Actuat. A: Phys., 134, 334 – 338, (2007).

5 Fournier, Y., Boutinard Rouelle, G., Craquelin, N., Maeder, T., Ryser, P.: SMD pressure and flow sensor for compressed air in LTCC technology with integrated electronics, Procedia Chemistry, 1, 1471 – 1474, (2009), doi:10.1016/j.proche.2009.07.367.

6 Hrovat, M., Belavic, D., Kita, J., Cilensek, J., Golonka, L., Dziedzic, A.: Thick-film temperature sensors on alumina and LTCC substrates, J. Eur. Ceram. Soc., 25, 3443 – 3450, (2005).

7 Gongora-Rubio, M.R., Espinoza-Vallejos, P., Sola-Laguna, L., Santiago-Avilés, J.J.: Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST), Sensor. Actuat. A: Phys., 89, 222 – 241, (2001).

8 Bartsch de Torres, H., Rensch, C., Fischer, M., Schober, A., Hoffmann, M., Müller, J.: Thick film flow sensor for biological microsystems, Sensor. Actuat. A: Phys., 160, 109 – 115, (2010).

9 Schmid, U.: A robust flow sensor for high pressure automotive applications, Sensor. Actuat. A: Phys., 97 – 98, 253 – 263, (2002).

10 Smetana, W., Unger, M.: Design and characterization of a humidity sensor realized in LTCC-technology, Microsyst. Technol., 14, 979 – 987, (2008).

11 Achmann, S., Hämmerle, M., Kita, J., Moos, R.: Miniaturized low temperature co-fired ceramics (LTCC) biosensor for amperometric gas sensing, Sensor. Actuat. B.-Chem., 135, 89 – 95, (2008).

12 Gómez-de Pedro, S., Puyol, M., Izquierdo, D., Salinas, I., de la Fuente, J.M., Alonso-Chamarro, J.: A ceramic microreactor for the synthesis of water soluble CdS and CdS/ZnS nanocrystals with on-line optical characterization, Nanoscale, 4, 1328 – 1335, (2012).

13 Nowak, D., Dziedzic, A.: LTCC package for high temperature applications, Microelectron. Reliab., 51, 1241 – 1244, (2011).

14 Teterycz, H., Kita, J., Bauer, R., Golonka, L.J., Licznerski, B.W., Nitsch, K., Winiewski, K.: New design of an SnO2 gas sensor on low temperature cofiring ceramics, Sensor. Actuat. B.-Chem., 47, 100 – 103, (1998).

15 Rettig, F., Moos, R.: Ceramic meso hot-plates for gas sensors, Sensor. Actuat. B.-Chem., 103, 91 – 97, (2004).

16 Kita, J., Rettig, F., Moos, R., Drüe, K.-H., Thust, H.: Hot plate gas sensors – are ceramics Better?, Int. J. Appl. Ceram. Tec., 2, 383 – 389, (2005).

17 Kita, J., Moos, R.: Development of LTCC-materials and their applications – an overview, Inform. MIDEM, 38, 219 – 224, (2008).

18 Wagner, M., Roosen A.: Low temperature co-fired ceramics (LTCC): Multilayer ceramics for microelectronic applications (in German), Handbuch Technische Keramische Werkstoffe, HvB-Verlag, Ellerau, Chap. 3.6.1.2., 1 – 34, (2002).

19 Imanaka, Y.: Multilayered low temperature cofired ceramics (LTCC) technology, Springer, New York, ISBN 978 – 0-387 – 23314 – 7, (2005), doi: 10.1007/b101196.

20 Hemminger, W.F., Cammenga, H.K: Methoden der thermischen analyse, Springer, Berlin (1989) (in German)

21 Ehrenstein, G.W., Riedel, G., Trawiel, P.: Thermal analysis of plastics, Hanser Verlag, Munich, (2004).

22 Industrial platinum resistance thermometers and platinum temperature sensors, Industrial Standard IEC 60751:2008; German version EN 60751:2008

23 Kita, J., Moos, R.: Properties and applications of zero-shrinkage LTCC, Proc. XXXIII International Conference of IMAPS - CPMT IEEE Poland, Pszczyna 21 – 24 September 2009, 183 – 189

24 Missal, W., Kita, J., Wappler, E., Gora, F., Kipka, A., Bartnitzek, T., Bechtold, F., Schabbel, D., Pawlowski, B., Moos, R.: Miniaturized ceramic differential scanning calorimeter with integrated oven and crucible in LTCC technology, Sensor. Actuat. A-Phys., 172, 21 – 26, (2011).

25 Missal, W., Kita, J., Wappler, E., Bechtold, F., Moos, R.: Calorimetric sensitivity and thermal resolution of a novel miniaturized ceramic DSC chip in LTCC technology, Thermochim. Acta, 543, 142 – 149, (2012).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH