Articles
All articles | Recent articles
Phase Transformation of 10Li2O-9MnO2-16Fe2O3-15CaO-5P2O5-5Al2O3-40SiO2 Glass
H.-Z. Cheng1, H.-J. Lin2, C.-S. Hsi2, C.-F. Wang1, M.-C. Wang3, H. Jiang4, C.-J. Li4, P. Lu5
1 Department of Materials Science and Engineering, I-Shou University, 1 Huseh-Cheng Road, Section 1, Ta-Hsu, Kaohsiung 84001, Taiwan
2 Department of Materials Science and Engineering, National United University, 1 Lien-Da Road, Kung-Ching Li, Miao-Li 36003, Taiwan
3 Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
4 Special Glass Key Laboratory of Hainan Province, Hainan University, 58 People Road, Haikou City, Hainan Province, P.R. China
5 Aviation Industry Corporation of China (Hainan) Special Glass Materials Co., LTD. South First Road, Economic Development Zone of Old City, Hainan Province, P.R. China
received March 16, 2013, received in revised form May 5, 2013, accepted June 5, 2013
Vol. 4, No. 3, Pages 151-156 DOI: 10.4416/JCST2013-00005
Abstract
The phase transformation and magnetic properties of 10Li2O-9MnO2-16Fe2O3-15CaO-5P2O5-5Al2O3-40SiO2 (LMFCPAS) glass have been observed and investigated using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDS), and transmission electron microscopy (TEM) with selected area electron diffraction (SAED). After crystallization of the LMFCPAS glass at 800 °C for 2 h, the crystalline phases of Li2Al2Si3O10, Li2SiO3, β-wollastonite (β-CaSiO3), lithium orthophosphate (Li3PO4), magnetite (FeFe2O4) and triphytite (Li(Mn0.5Fe0.5)PO4) were obtained. When the LMFCPAS glass crystallized at 850 °C, the β-wollastonite exhibited lath form morphology. As the LMFCPAS glass crystallized at 850 °C for 16 h and under an applied magnetic field of 1000 Oe, very small remnant magnetic induction and coercive force of 0.01 emu/g and 50 Oe were obtained, respectively.
Download Full Article (PDF)
Keywords
LMFCPAS glass, crystallization behavior, lath form
References
1 Ohura, K., Ikenaga, M., Nakamura, T., Yamamuro, T., Ebisawa, Y., Kokubo, T., Kotoura, Y., Oka, M.: A heat-generating bioactive glass-ceramic for hyperthermia, J. Appl. Biomater., 2, 153 – 159, (1991).
2 Leventouri, T., Kis, A.C., Thompson, J.R., Anderson, I.M.: Structure, microstructure and magnetism in ferromagnetic bioceramics, Biomaterials, 26, 4924 – 4931, (2005).
3 Singh, R.K., Kothiyal, G.P., Srinivasan, A.: Magnetic and structural properties of CaO-SiO2-P2O5-Na2O-Fe2O3 glass ceramics, J. Magn. Magn. Mater., 320, 1352 – 1356, (2008).
4 Luderer, A.A., Borrelli, N.F., Panzarino, J.N., Mansfield, G.R., Hess, M., Brown, J.R., Barnet, E.H.: Glass-ceramic-mediated, magnetic-field-induced localized hyperthermia: response of a murine mannary carcinoma, Radiat. Res., 94, 190 – 198, (1983).
5 Oh, S.H., Choi, S.Y., Lee, Y.K., Kim, K.N.: Research on annihilation of cancer cells by glass-ceramics for cancer treatment with external magnetic field. I. preparation and toxicity, J. Biomed. Mater. Res., 54, 360 – 365, (2001).
6 Hsi, C.S., Wang, M.C.: Crystallization kinetics and phase transformation of Li2O-Fe2O3-MnO2-CaO-P2O5-SiO2 glass, J. Mater. Res., 13, 2655 – 2661, (1998).
7 Wang, M.C., Wang, C.F., Hsi, C.S.: Crystallization kinetics and morphology of an Li2O-MnO2-Fe2O3-CaO-P2O5-SiO2 glass, Glastech.Ber. Glass Sci. Technol., 73C1, 82 – 89, (2000).
8 Hsi, C.S., Cheng, H.Z., Hsu, H.J., Chen, Y.S., Wang, M.C.: Crystallization kinetics and magnetic properties of iron oxide contained 25Li2O-8MnO2-20CaO-P2O5-45SiO2 glasses, J. Eur. Ceram. Soc., 27, 3171 – 3176, (2007).
9 Ferreira da Sila, M.G., Costa, B.F.O.: The effect of composition and temperature on the amount and type of nanoferrite particles inserted in Fe2O3-ZnO-MgO-SiO2 glass-ceramics, J. Non-cryst. Solids., 357, 3722 – 3725, (2011).
10 Singh, R.K., Srinivasan, A.: Magnetic properties of bioactive glass-ceramics containing nanocrystalline zinc ferrite, J. Magn. Magn. Mater., 323, 330 – 333, (2011).
11 Mirkazemi, S.M., Marghussian, V.K., Beitollahi, A.: Microstructure and magnetic properties of BaO-Fe2O3-B2O3-SiO2 glass ceramic, Ceram. Int., 32, 43 – 51, (2006).
12 Lee, C.K., Berta, R.F., Speyer, R.F.: Effect of Na2O addition in the crystallization of barium ferrite from a BaO-B2O3-Fe2O3 glass, J. Am. Ceram. Soc., 79, 183 – 192, (1996).
13 Singh, R.K., Srinivasan, A.: Bioactivity of ferromagnetic MgO-CaO-SiO2- P2O5-Fe2O3 glass-ceramics, Ceram. Int., 32, 283 – 290, (2010).
14 Mirkazemi, S.M., Marghussian, V.K., Beitollahi, A., Dou, S.X., Wexler, D., Konstaninov, K.: Effect of ZrO2 nucleant on crystallization behavior, microstructure and magnetic properties of BaO-Fe2O3-B2O3-SiO2 glass ceramics, Ceram. Int., 33, 463 – 469, (2007).
15 Chikazumi. S., Taketomi, S., Ukita, M., Mizukami, M., Miyajima, H., Setogawa, M., Kurihara, M.: Physics of magnetic fluids, J. Magn. Magn. Mater., 65, 245 – 251, (1987).
16 Wu, C.S., Hsi, C.S., Hsu, F.C., Wang, M.C., Chen, Y.S.: Magnetism and thermal induced characteristics of Fe2O3 content bioceramics, J. Magn. Magn. Mater., 324, 3918 – 3923, (2012).
Copyright
Göller Verlag GmbH