Articles
All articles | Recent articles
Nanomaterials and Ceramic Nanoparticles – Use without Side-Effects?
M. Roesslein1, V. Richter2, P. Wick1, H. F. Krug1
1 Empa, Swiss Federal Laboratories for Material Science and Technology, 9014 St Gallen, Switzerland
2 IKTS, Fraunhofer Institute for Ceramic Technologies and Systems, 01277 Dresden, Germany
received September 28, 2012, received in revised form April 25, 2013, accepted May 17, 2013
Vol. 4, No. 2, Pages 123-130 DOI: 10.4416/JCST2012-00038
Abstract
It is expected that ceramic nanoparticles will be more intensely used in various technical, medical and biological fields in the near future. But their interaction with biological objects has not yet been completely understood. Within the scientific community, NGOs and the public, there is considerable concern about possible side-effects on health and environment. In an investigation of the behaviour of nanoparticles in a biological environment or nano-toxicological effects, three crucial phenomena have to be analysed in detail: material properties, surface state/surface reactions and uptake/transport. Unfortunately, publications on the biological effects of nanoparticles often do not sufficiently describe the physical and chemical properties of the particles under consideration or are based on overdoses. Moreover, measurement uncertainties and methodological pitfalls contribute to the divergent opinions about the possible risks of nanomaterials. Of the numerous publications, only few deliver reliable data. To obtain comparable toxicological results as achieved previously in other fields of physics and chemistry, a worldwide effort is needed to standardize the measurement methods used in nanotoxicology, focussing especially on the characterization of nanoparticles and the specific effects of the particle nature on the measurement system.
Download Full Article (PDF)
Keywords
Ceramic nanoparticles, health risks, toxicology, comparability, standardization
References
0 Nanoscience and nanotechnologies: opportunities and uncertainties, The Royal Society and The Royal Academy of Engineering, (2004).
1 Donaldson, K., et al.: Nanotoxicology, Occup. Environ. Med., 61, [9], 727 – 728, (2004).
2 Oberdorster, G., Oberdorster, E., Oberdorster, J.: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect., 113, [7], 823 – 839, (2005).
3 Hristozov, D.R., et al.: Risk assessment of engineered nanomaterials: A review of available data and approaches from a regulatory perspective, Nanotoxicology, (2012).
4 Davoren, M., et al.: In vitro toxicity evaluation of single-walled carbon nanotubes on human A549 lung cells. Toxicol. in Vitro, 21, [3], 438 – 448, (2007).
5 Monteiro-Riviere, N.A., Inman, A.O.: Challenges for assessing carbon nanomaterial toxicity to the skin, Carbon, 44, [6], 1070 – 1078, (2006).
6 Worle-Knirsch, J.M., Pulskamp, K., Krug, H.F.: Oops they did it again! Carbon nanotubes hoax scientists in viability assays, Nano Lett., 6, [6], 1261 – 1268, (2006).
7 Spohn, P., et al.: C60 fullerene: A powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays, Environ. Pollut., 157, [4], 1134 – 1139, (2009).
8 ISO, ISO 14644 – 6:2007 Cleanrooms and associated controlled environments – Part 6: Vocabulary. 2007, ISO: Geneva, 34.
9 Lövestam, G., et al.: Considerations on a definition of nanomaterial for regulatory purposes, in European Commission Joint Research Centre, JRC Reference Reports. 2010, European Commission, Joint Research Centre, 36.
10 Maynard, A.D.: Don't define nanomaterials, Nature, 475, [7354], 31, (2011).
11 Sayes, C.M., Reed, K.L., Warheit, D.B.: Assessing toxicity of fine and nanoparticles: Comparing in vitro measurements to in vivo pulmonary toxicity profiles, Toxicol. Sci., 97, [1], 163 – 180, (2007).
12 Johnston, H.J., et al.: A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics, Nanotoxicology, 4, 207 – 246, (2010).
13 Geiser, M., et al.: Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells, Environ. Health Perspect., 113, [11], 1555 – 1560, (2005).
14 NanoDerm. 2008 [cited 2012 25.9.2012]; Quality of skin as a barrier to ultra fine particles. Available from: http://www.uni-leipzig.de/∼nanoderm/.
15 Baroli, B., et al.: Penetration of metallic nanoparticles in human full-thickness skin, J. Invest. Dermatol., 127, [7], 1701 – 1712, (2007).
16 Larese, F.F., et al.: Human skin penetration of silver nanoparticles through intact and damaged skin, Toxicology, 255, [1 – 2], 33 – 37, (2009).
17 Rouse, J.G., et al.: Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin, Nano Lett., 7, [1], 155 – 160, (2007).
18 Ryman-Rasmussen, J.P., Riviere, J.E., Monteiro-Riviere, N.A.: Penetration of intact skin by quantum dots with diverse physicochemical properties, Toxicol. Sci., 91, [1], 159 – 165, (2006).
19 Ryman-Rasmussen, J.P., Riviere, J.E., Monteiro-Riviere, N.A.: Variables influencing interactions of untargeted quantum dot nanoparticles with skin cells and identification of biochemical modulators, Nano Lett., 7, [5], 1344 – 1348, (2007).
20 Riehemann, K., et al.: Nanomedicine-challenge and perspectives, Angew. Chem. Int. Edit., 48, [5], 872 – 897, (2009).
21 Thiesen, B., Jordan, A.: Clinical applications of magnetic nanoparticles for hyperthermia, Int. J. Hyperther., 24, [6], 467 – 474, (2008).
22 Reddy, S.T., et al.: Exploiting lymphatic transport and complement activation in nanoparticle vaccines, Nat. Biotechnol., 25, [10], 1159 – 1164, (2007).
23 Alyaudtin, R.N., et al.: Interaction of nanoparticles with the blood-brain barrier in vivo and in vitro, J. Drug Target., 9, [3], 209 – 221, (2001).
24 Koziara, J.M., et al.: In situ blood – brain barrier transport of nanoparticles. Pharm. Res., 20, [11], 1772 – 1778, (2003).
25 Kreuter, J.: Nanoparticulate systems for brain delivery of drugs. Advanced Drug Deliver. Rev., 47, [1], 65 – 81, (2001).
26 Lockman, P.R., et al.: In vivo and in vitro assessment of baseline blood-brain barrier parameters in the presence of novel nanoparticles, Pharm. Res., 20, [5], 705 – 713, (2003).
27 Wick, P., et al.: Barrier capacity of human placenta for nanosized materials, Environ. Health Persp., 118, [3], 432 – 436, (2010).
28 Krug, H.F., Wick, P.: Nanotoxicology: An interdisciplinary challenge, Angew Chem. Int. Edit., 50, [6], 1260 – 1278, (2011).
29 Beyersmann, D., Hartwig, A.: Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms, Arch. Toxicol., 82, [8], 493 – 512, (2008).
30 Conner, S.D., Schmid, S.L.: Regulated portals of entry into the cell, Nature, 422, [6927], 37 – 44, (2003).
31 Kanno, S., Furuyama, A., Hirano, S.: A murine scavenger receptor MARCO recognizes polystyrene nanoparticles, Toxicol. Sci., 97, [2], 398 – 406, (2007).
32 Nagayama, S., et al.: Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics, Int. J. Pharm., 342, [1 – 2], 215 – 221, (2007).
33 von Zur Muhlen, C., et al.: Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): implications on imaging of atherosclerotic plaques, Atherosclerosis, 193, [1], 102 – 111, (2007).
34 Rothen-Rutishauser, B.M., et al.: Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques, Environ. Sci. Technol., 40, [14], 4353 – 4359, (2006).
35 Simon-Deckers, A., et al.: Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria, Environ. Sci. Technol., 43, [21], 8423 – 8429, (2009).
36 Kreyling, W.G., Hirn, S., Schleh, C.: Nanoparticles in the lung, Nat. Biotechnol., 28, [12], 1275 – 1276, (2010).
37 Kreyling, W.G., et al.: Differences in the biokinetics of inhaled Nano- versus micrometer-sized particles, Acc. Chem. Res., (2012).
38 Semmler-Behnke, M., et al.: Biodistribution of 1.4- and 18-nm gold particles in rats, Small, 4, [12], 2108 – 2111, (2008).
39 Nel, A.E., et al.: Understanding biophysicochemical interactions at the nano-bio interface, Nat. Mater., 8, [7], 543 – 557, (2009).
40 Oberdorster, G., et al.: Acute pulmonary effects of ultrafine particles in rats and mice, Res. Rep. Health Eff. Inst., 96, 5 – 74; disc 75 – 86, (2000).
41 Stoeger, T., et al.: Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice, Environ. Health Perspect., 114, [3], 328 – 333, (2006).
42 Zhang, Q., et al.: Comparative toxicity of standard nickel and ultrafine nickel in lung after intratracheal instillation, J. Occup. Health, 45, [1], 23 – 30, (2003).
43 Schrand, A.M., et al.: Are diamond nanoparticles cytotoxic?, J. Phys. Chem. B, 111, [1], 2 – 7, (2007).
44 Vial, S., et al.: Peptide-grafted nanodiamonds: preparation, cytotoxicity and uptake in cells, Chembiochem., 9, [13], 2113 – 2119, (2008).
45 Monteiller, C., et al.: The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: The role of surface area, Occup. Environ. Med., 64, [9], 609 – 615, (2007).
46 Sager, T.M., Castranova, V.: Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: Comparison to ultrafine titanium dioxide, Part. Fibre Toxicol., 6, [15], (2009).
47 Sayes, C.M., et al.: Comparative pulmonary toxicity assessments of C60 water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles, Nano Lett., 7, [8], 2399 – 2406, (2007).
48 Donaldson, K., et al.: Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety, Toxicol. Sci., 92, [1], 5 – 22, (2006).
49 Donaldson, K., et al.: Asbestos, carbon nanotubes and the pleural mesothelium: A review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma, Part. Fibre Toxicol., 7, [1], 5, (2010).
50 Donaldson, K., Poland, C.A., Schins, R.P.F.: Possible genotoxic mechanisms of nanoparticles: Criteria for improved test strategies, Nanotoxicology, 4, [4], 414 – 420, (2010).
51 Wick, P., et al.: The degree and kind of agglomeration affect carbon nanotube cytotoxicity, Toxicol. Lett., 168, 121 – 131, (2007).
52 Warheit, D.B.: How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization?, Toxicol. Sci., 101, [2], 183 – 185, (2008).
53 Haynes, C.L.: The emerging field of nanotoxicology, Anal. Bioanal. Chem., 398, [2], 587 – 588, (2010).
54 Locascio, L.E., et al.: Nanomaterial toxicity: emerging standards and efforts to support standards development, in nanotechnology standards, Murashov, V. and Howard, J., Editors. 2011, Springer: New York. 179 – 208.
55 Pulskamp, K., Diabate, S., Krug, H.F.: Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett., 168, [1], 58 – 74, (2007).
56 Zhang, X., et al.: A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond, Toxicol. Res., 1, 62 – 68, (2012).
57 Berridge, M.V., Herst, P.M., Tan, A.S.: Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction, in Biotechnology Annual Review, El-Gewely, M.R., Editor. 2005, Elsevier. 127 – 152.
58 Mitchell, D.B., Santone, K.S., Acosta, D.: Evaluation of cytotoxicity in cultured cells by enzyme leakage, Methods in Cell Science, 6, [3], 113 – 116, (1980).
59 JCGM, International vocabulary of metrology – Basic and general concepts and associated terms (VIM). 2012, JCGM: Paris, 108.
60 JCGM, Evaluation of measurement data – Guide to the expression of uncertainty in measurement. 2008, JCGM: Paris, 134.
61 cms/Projekte/NanoCare.
62 Nanommune. 2011 [cited 2012 26.9.2012]; Available from: http://ki.projectcoordinator.net/∼NANOMMUNE.
63 Ekimov, A.I., Onushchenko, A.A.: Quantum size effect in three-dimensional microscopic semiconductor crystals, JETP Lett., 34, 345 – 349, (1981), see: Masanori Ohya, Igor Volovich, Mathematical Foundations of Quantum Information and Computation and Its Application to nano- and Bio-systems, Springer Dordrecht Heidelberg London New York. (2011)
64 Wautelet, Michel (Editor): Nanotechnologie, Oldenbourg Wissenschaftsverlag GmbH, Munich, p. 190 (2008) (Original edition: Dunod Ãditeur, Paris 2003)
65 Meissner, T., Kühnel, D., Busch, W., Oswald, S., Richter, V., Michaelis, A., Schirmer, K., Potthoff, A.: Physical-chemical characterization of tungsten carbide nanoparticles as a basis for toxicological investigations, Nanotoxicology, 4,196 – 206, (2010)
66 Kühnel, D., Busch, W., Meissner, T., Springer, A., Potthoff, A., Richter, V., Gelinsky, M., Scholz, S., Schirmer, K.: Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line, Aquat. Toxicol., 93 [2 – 3], 91 – 99, (2009).
Copyright
Göller Verlag GmbH