Articles
All articles | Recent articles
Alumina-Doped 2.5Y-TZP produced from Yttria-Coated pyrogenic Nanopowder
F. Kern
University of Stuttgart, Institute for Manufacturing Technologies of Ceramic Components and Composites, 70569 Stuttgart, Allmandring 7b, Germany
received January 10, 2011, , accepted February 25, 2011
Vol. 2, No. 2, Pages 89-96 DOI: 10.4416/JCST2011-00001
Abstract
Y-TZP ceramics are widely used owing to their high strength, toughness and abrasion resistance. In this study, pyrogenic zirconia nanopowders were coated with yttria via the nitrate route and blended with 0.5 vol% alumina. Powders were consolidated by hot pressing at 1200 – 1500 °C. The fine-grain TZP materials produced show high strength of 1 GPa. Despite the high toughness of > 9 MPa·√m and high transformability of > 60 %, the ceramics exhibit aging resistance similar to state-of-the-art co-precipitated . The parameters of the Mehl-Avrami-Johnson kinetics indicate that aging of coated 2.5Y-TZP proceeds at similar rate constants but more evenly at lower Avrami exponents, which makes the low-temperature degradation process more controllable and less catastrophic. After stress-induced transformation a new phase was identified in the fracture faces which may be an ordered defect structure formed during fast transformation. The phase was not detected after aging-induced transformation.
Download Full Article (PDF)
Keywords
Zirconia, hot pressing, mechanical properties, microstructure, low-temperature degradation, phase analysis
References
1 Hannink, R.J., Kelly, P.M., Muddle, B.C.: Transformation toughening in zirconia containing ceramics, J. Am. Ceram. Soc., 83, [3], 461-87, (2000).
2 Chen, M., Hallstedt, B., Gauckler, L.J.: Thermodynamic modelling of the ZrO2-YO1.5 system, Solid State Ionics, 170, 255-274, (2004).
3 Basu, B., Vleugels, J., Van der Biest, O.: Toughness tailoring in yttria-doped zirconia ceramics, Mat. Sci. Eng. A, 380, 215-221, (2004).
4 Ruiz, L., Readey, M.J: Effect of heat treatment on grain size, phase assemblage, and mechanical properties of 3 mol% Y-TZP, J.Am.Ceram. Soc., 79, [9], 2331-40, (1996).
5 Chevalier, J., Cales, B., Drouin, J-M.: Low temperature ageing of Y-TZP ceramics, J. Am. Ceram. Soc., 82, [8], 2150-54, (1999).
6 Ross, I.M., Rainforth, W.M., McComb, D.W., Scott, A.J., Brydson, R.: The role of trace additions of alumina to yttria-tetragonal zirconia polycrystals (Y-TZP), Scripta Mater., 45, 653-660, (2001).
7 Tsubakino, H., Sonoda, K., Nozato, R.: Martensite transformation behavior during isothermal ageing in partially stabilized zirconia with and without alumina, J. Mat. Sci. Let., 12, 193-198, (1993).
8 Chevalier, J., Deville, S., Münch, E., Jullian, R., Lair, F.: Critical effect of cubic phase on ageing in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis, Biomaterials, 25, 5539-5545, (2004).
9 Tanaka, K. et al.: Ce-TZP/Al2O3 nanocomposites as a bearing material in total joint replacement, J. Biomed. Mater. Res., 63, 262-270, (2002).
10 Benzaid, R., Chevalier, J., Saadaoui, M., Fantozzi, G., Nawa, M., Diaz, L.A., Torrecillas, R.: Fracture toughness, strength and slow crack growth in ceria-stabilized zirconia-alumina nanocomposite for medical application, Biomaterials, 29, 3636-3641, (2008)
11 Burger, W., Richter, H.G.: High-strength and toughness alumina matrix composites by transformation toughening and "in situ" platelet reinforcement (ZPTA) – the new generation of bioceramics, Key Eng. Mat., 192-195, 545-548, (2001).
12 Chevalier, J., Grandjean, S., Kuntz, M., Pezzotti G.: On the kinetics and impact of tetragonal to monoclinic transformation in an alumina/zirconia composite for arthoplasty applications, Biomaterials, 30, 5279-5282, (2009).
13 Singh R., Gill, C., Lawson, S., Dransfield, G.P.: Sintering, microstructure and mechanical properties of commercial Y-TZPs, J. Mat. Sci., 31, 6055- 6062, (1996).
14 Burger, W., Richter, H.G., Piconi, C., Vatteroni, R., Cittadini, A., Boccalari, M.: New Y-TZP powders for medical grade zirconia, J. Mat. Sci.: Materials in Medicine, 8, 113-118, (1997).
15 Picconi, C., Burger, W., Richter, H.G., Cittadini, A., Maccauro, G., Covacci, V., Bruzzese, N., Ricci, G.A., Marmo, E.: Y-TZP ceramics for artificial joint replacements, Biomaterials, 19, 1489-1494, (1998).
16 Yuan, Z.X., Vleugels, J., Van der Biest, O.: Preparation of Y2O3-coated ZrO2 powder by suspension drying, J. Mat. Sci. Let., 19, 359-361, (2000).
17 Vleugels, J., Yuan, Z.X., Van der Biest, O.: Mechanical properties of Y2O3/Al2O3-coated Y-TZP ceramics, J. Eur. Ceram. Soc., 22, 873-881, (2002).
18 Binner, J., Vaidhyanathan, B., Paul, A., Annaporani, K., Raghupathy, B.: Compositional effects in nanostructured yttria-stabilized zirconia, Int. J. Appl. Ceram. Techn., 7, Suppl s1, E135-E143, (2010).
19 Raghupathy, B.P.C., Binner, J.: Spray Granulation of Nanometric Zirconia Particles, J. Am. Ceram. Soc., no. doi: 10.1111/j.1551-2916.2010.04019.x.
20 Kern, F.: 2.5Y-TZP from Yttria-Coated Pyrogenic Zirconia Nanopowder, J. Cer. Sci. Tech., 1, [1], 2126, (2010).
21 Nikolay, D., Kollenberg, W., Deller, K., Oswald, M., Tontrup, C.: Manufacturing and properties of ZTA-ceramics with nanoscaled ZrO2, cfi/Ber. DKG., 83, [4], E35-E37, (2006).
22 Kern, F., Gadow. R: Proceedings of the 12th European Interregional Conference on Ceramics CIEC 12, University of Mons, Belgium, (2010).
23 Niihara, K.: A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, J. Mat. Sci. Let., 2, 221-223, (1983).
24 Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements, J. Am. Ceram. Soc., 64, [9], 533-538, (1981).
25 Quinn, G.D., Bradt, R.C.: On the indentation fracture toughness test, J. Am. Ceram. Soc., 90, [3], 673-680, (2007).
26 Chantikul, P., Anstis, G.R., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method, J. Am. Ceram. Soc., 64, [9], 539-543, (1981).
27 Mendelson, M.I.: Average grain size in polycrystalline ceramics, J. Am. Ceram. Soc., 52, [8], 443-446, (1969).
28 Toraya, H., Yoshimura, M., Somiya, S.: Calibration Curve for Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-Ray Diffraction, J. Am. Ceram. Soc., 67, [6], C119-121, (1984).
29 Swain, M.V., Rose, L.R.F.: Strength limitations in transformation-toughened zirconia alloys, J. Am. Ceram. Soc., 69, [7], 511-18, (1986).
30 Kern, F.: Microstructure and mechanical properties of hot-pressed alumina – 5 vol% zirconia nanocomposites, J. Cer. Sci. Tech., 2, [1], 69-74, (2011).
31 Goff, J.P., Hayes, W., Hull, S., Hutchings, M.T., Clausen, K.N.: Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures, Phys. Rev. B, 59, 14202-14219, (1999).
32 Elshof, J.E., Hendriks, M.G.H.M., Bouwmeester, J.M., Verweij, H.: The near surface defect structure of yttria-stabilized zirconia determined by measurement of differential capacity, J. Mater. Chem., 11, 2564-2571, (2001).
33 Chevalier, J., Gremillard, L., Deville, S.: Low temperature degradation of zirconia and implications to biomedical implants, Annu. Rev. Mater. Res., 37, 1-32, (2007).
34 Schneider, J., Begand, S., Kriegel, R., Kaps, C., Glien, W., Oberbach, T.: Low-temperature aging behavior of alumina-toughened zirconia, J. Am. Ceram. Soc., 91, [11], 3613-18, (2008).
Copyright
Göller Verlag GmbH