• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Alumina-Doped 2.5Y-TZP produced from Yttria-Coated pyrogenic Nanopowder

F. Kern

University of Stuttgart, Institute for Manufacturing Technologies of Ceramic Components and Composites, 70569 Stuttgart, Allmandring 7b, Germany

received January 10, 2011, , accepted February 25, 2011

Vol. 2, No. 2, Pages 89-96   DOI: 10.4416/JCST2011-00001

Abstract

Y-TZP ceramics are widely used owing to their high strength, toughness and abrasion resistance. In this study, pyrogenic zirconia nanopowders were coated with yttria via the nitrate route and blended with 0.5 vol% alumina. Powders were consolidated by hot pressing at 1200 – 1500 °C. The fine-grain TZP materials produced show high strength of 1 GPa. Despite the high toughness of > 9 MPa·√m and high transformability of > 60 %, the ceramics exhibit aging resistance similar to state-of-the-art co-precipitated . The parameters of the Mehl-Avrami-Johnson kinetics indicate that aging of coated 2.5Y-TZP proceeds at similar rate constants but more evenly at lower Avrami exponents, which makes the low-temperature degradation process more controllable and less catastrophic. After stress-induced transformation a new phase was identified in the fracture faces which may be an ordered defect structure formed during fast transformation. The phase was not detected after aging-induced transformation.

Download Full Article (PDF)

Keywords

Zirconia, hot pressing, mechanical properties, microstructure, low-temperature degradation, phase analysis

References

1 Hannink, R.J., Kelly, P.M., Muddle, B.C.: Transformation toughening in zirconia containing ceramics, J. Am. Ceram. Soc., 83, [3], 461-87, (2000).

2 Chen, M., Hallstedt, B., Gauckler, L.J.: Thermodynamic modelling of the ZrO2-YO1.5 system, Solid State Ionics, 170, 255-274, (2004).

3 Basu, B., Vleugels, J., Van der Biest, O.: Toughness tailoring in yttria-doped zirconia ceramics, Mat. Sci. Eng. A, 380, 215-221, (2004).

4 Ruiz, L., Readey, M.J: Effect of heat treatment on grain size, phase assemblage, and mechanical properties of 3 mol% Y-TZP, J.Am.Ceram. Soc., 79, [9], 2331-40, (1996).

5 Chevalier, J., Cales, B., Drouin, J-M.: Low temperature ageing of Y-TZP ceramics, J. Am. Ceram. Soc., 82, [8], 2150-54, (1999).

6 Ross, I.M., Rainforth, W.M., McComb, D.W., Scott, A.J., Brydson, R.: The role of trace additions of alumina to yttria-tetragonal zirconia polycrystals (Y-TZP), Scripta Mater., 45, 653-660, (2001).

7 Tsubakino, H., Sonoda, K., Nozato, R.: Martensite transformation behavior during isothermal ageing in partially stabilized zirconia with and without alumina, J. Mat. Sci. Let., 12, 193-198, (1993).

8 Chevalier, J., Deville, S., Münch, E., Jullian, R., Lair, F.: Critical effect of cubic phase on ageing in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis, Biomaterials, 25, 5539-5545, (2004).

9 Tanaka, K. et al.: Ce-TZP/Al2O3 nanocomposites as a bearing material in total joint replacement, J. Biomed. Mater. Res., 63, 262-270, (2002).

10 Benzaid, R., Chevalier, J., Saadaoui, M., Fantozzi, G., Nawa, M., Diaz, L.A., Torrecillas, R.: Fracture toughness, strength and slow crack growth in ceria-stabilized zirconia-alumina nanocomposite for medical application, Biomaterials, 29, 3636-3641, (2008)

11 Burger, W., Richter, H.G.: High-strength and toughness alumina matrix composites by transformation toughening and "in situ" platelet reinforcement (ZPTA) – the new generation of bioceramics, Key Eng. Mat., 192-195, 545-548, (2001).

12 Chevalier, J., Grandjean, S., Kuntz, M., Pezzotti G.: On the kinetics and impact of tetragonal to monoclinic transformation in an alumina/zirconia composite for arthoplasty applications, Biomaterials, 30, 5279-5282, (2009).

13 Singh R., Gill, C., Lawson, S., Dransfield, G.P.: Sintering, microstructure and mechanical properties of commercial Y-TZPs, J. Mat. Sci., 31, 6055- 6062, (1996).

14 Burger, W., Richter, H.G., Piconi, C., Vatteroni, R., Cittadini, A., Boccalari, M.: New Y-TZP powders for medical grade zirconia, J. Mat. Sci.: Materials in Medicine, 8, 113-118, (1997).

15 Picconi, C., Burger, W., Richter, H.G., Cittadini, A., Maccauro, G., Covacci, V., Bruzzese, N., Ricci, G.A., Marmo, E.: Y-TZP ceramics for artificial joint replacements, Biomaterials, 19, 1489-1494, (1998).

16 Yuan, Z.X., Vleugels, J., Van der Biest, O.: Preparation of Y2O3-coated ZrO2 powder by suspension drying, J. Mat. Sci. Let., 19, 359-361, (2000).

17 Vleugels, J., Yuan, Z.X., Van der Biest, O.: Mechanical properties of Y2O3/Al2O3-coated Y-TZP ceramics, J. Eur. Ceram. Soc., 22, 873-881, (2002).

18 Binner, J., Vaidhyanathan, B., Paul, A., Annaporani, K., Raghupathy, B.: Compositional effects in nanostructured yttria-stabilized zirconia, Int. J. Appl. Ceram. Techn., 7, Suppl s1, E135-E143, (2010).

19 Raghupathy, B.P.C., Binner, J.: Spray Granulation of Nanometric Zirconia Particles, J. Am. Ceram. Soc., no. doi: 10.1111/j.1551-2916.2010.04019.x.

20 Kern, F.: 2.5Y-TZP from Yttria-Coated Pyrogenic Zirconia Nanopowder, J. Cer. Sci. Tech., 1, [1], 2126, (2010).

21 Nikolay, D., Kollenberg, W., Deller, K., Oswald, M., Tontrup, C.: Manufacturing and properties of ZTA-ceramics with nanoscaled ZrO2, cfi/Ber. DKG., 83, [4], E35-E37, (2006).

22 Kern, F., Gadow. R: Proceedings of the 12th European Interregional Conference on Ceramics CIEC 12, University of Mons, Belgium, (2010).

23 Niihara, K.: A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, J. Mat. Sci. Let., 2, 221-223, (1983).

24 Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B.: A criti­cal evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements, J. Am. Ceram. Soc., 64, [9], 533-538, (1981).

25 Quinn, G.D., Bradt, R.C.: On the indentation fracture toughness test, J. Am. Ceram. Soc., 90, [3], 673-680, (2007).

26 Chantikul, P., Anstis, G.R., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method, J. Am. Ceram. Soc., 64, [9], 539-543, (1981).

27 Mendelson, M.I.: Average grain size in polycrystalline ceramics, J. Am. Ceram. Soc., 52, [8], 443-446, (1969).

28 Toraya, H., Yoshimura, M., Somiya, S.: Calibration Curve for Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-Ray Diffraction, J. Am. Ceram. Soc., 67, [6], C119-121, (1984).

29 Swain, M.V., Rose, L.R.F.: Strength limitations in transformation-toughened zirconia alloys, J. Am. Ceram. Soc., 69, [7], 511-18, (1986).

30 Kern, F.: Microstructure and mechanical properties of hot-pressed alumina – 5 vol% zirconia nanocomposites, J. Cer. Sci. Tech., 2, [1], 69-74, (2011).

31 Goff, J.P., Hayes, W., Hull, S., Hutchings, M.T., Clausen, K.N.: Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures, Phys. Rev. B, 59, 14202-14219, (1999).

32 Elshof, J.E., Hendriks, M.G.H.M., Bouwmeester, J.M., Verweij, H.: The near surface defect structure of yttria-stabilized zirconia determined by measurement of differential capacity, J. Mater. Chem., 11, 2564-2571, (2001).

33 Chevalier, J., Gremillard, L., Deville, S.: Low temperature degradation of zirconia and implications to biomedical implants, Annu. Rev. Mater. Res., 37, 1-32, (2007).

34 Schneider, J., Begand, S., Kriegel, R., Kaps, C., Glien, W., Oberbach, T.: Low-temperature aging behavior of alumina-toughened zirconia, J. Am. Ceram. Soc., 91, [11], 3613-18, (2008).

Copyright

Göller Verlag GmbH

Acknowledgments

Special and Topcial Issues

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2017 Göller Verlag GmbH