Articles
All articles | Recent articles
Microstructure and Mechanical Properties of Hot-Pressed Alumina – 5 vol% Zirconia Nanocomposites
F. Kern
Institute for Manufacturing Technologies of Ceramic Components and Composites, University of Stuttgart, D-70569 Stuttgart, Allmandring 7b
received October 8, 2010, received in revised form October 16, 2010, accepted October 22, 2010
Vol. 2, No. 1, Pages 69-74 DOI: 10.4416/JCST2010-00038
Abstract
Zirconia-toughened alumina (ZTA) ceramics are known to combine the hardness and abrasion resistance of alumina with an additional toughness increment introduced by zirconia. Toughening occurs by transformation toughening and/or microcracking depending on the grain size and stabilizer content of zirconia. In this study ZTA with 5 vol% unstabilized nanozirconia was manufactured by means of a mixing and milling technique and consolidated by hot pressing at 1350 – 1600 °C. Variation of the sintering conditions leads to nanocomposites with different microstructural features, such as grain sizes and inter- or intragranular location of zirconia reinforcement. It was found that despite the low zirconia content, attractive hardness and strength levels as well as moderate toughness values can be obtained.
Download Full Article (PDF)
Keywords
Nanocomposites, ZTA, sintering, microstructure, zirconia, alumina
References
1 Deville, S., Chevalier, J., Fantozzi, G., Bartolomé, J.F., Requena, J., Moya, J.S., Torrecillas, R., Díaz, L.A.: Development of Advanced Zirconia-Toughened Alumina Nanocomposites for Orthopaedic Applications, Key Engineering Materials, 264-268, 2013-2016, (2004).
2 Chevalier, J., Grandjean, S., Kuntz, M., Pezzotti, G..: On the kinetics and impact of tetragonal to monoclinic transformation in an alumina/zirconia composite for arthroplasty applications, Biomaterials, 30 [9], 5279-5282, (2009).
3 Becher, P., Swain, M.: Grain-Size-Dependent Transformation Behavior in Polycrystalline Tetragonal Zirconia, J. Am. Ceram. Soc., 75 [3], 493-502, (1992).
4 Claussen, N.: Fracture Toughness of Al2O3 with an Unstabilized ZrO2 Dispersed Phase, J. Am. Ceram. Soc., 59 [1-2], 49-51, (1976).
5 Lange, F.F.: Transformation toughening, part 4: Fabrication, fracture toughness and strength of Al2O3 - ZrO2 composites, J. Mat. Sci., 17, 247-254, (1982).
6 Heuer, A.H., Claussen, N., Kriven W.M., Rühle, M.: Stability of Tetragonal ZrO2 Particles in Ceramic Matrices, J. Am. Ceram. Soc., 65 [12], 642-650, (1982).
7 Chevalier, J., Deville, S., Fantozzi, G., Bartolome, J.F., Pecharroman, C., Moya, J.S., Diaz, L.A., Torrecillas, R.: Nanostructured Ceramic Oxides with a Slow Crack Growth Resistance Close to Covalent Materials, Nanoletters, 5 [7], 1297-1301, (2005).
8 Jia, Y., Hotta, Y., Sato, K., Watari, K.: Homogeneous ZrO2-Al2O3 composite prepared by Nano-ZrO2 particle multilayer coated Al2O3 particles, J. Am. Ceram. Soc., 89 [3], 1103-1106, (2006).
9 Palmero, P., Naglieri, V., Chevalier, J., Fantozzi, G., Montanaro, L.: Alumina-based nanocomposites obtained by doping with inorganic salt solutions: Application to immiscible and reactive systems, J. Eur. Ceram. Soc., 29 [1], 59-66, (2009).
10 Gadow, R., Kern, F.: Pressureless sintering of injection molded zirconia toughened alumina nanocomposites, J. Cer. Soc. Jap., 114 [11], 958-962, (2006).
11 Kern, F.: 2.5Y-TZP from yttria-coated pyrogenic zirconia nanopowder, J. Cer. Sci. Tech., 1 [1], 21-26, (2010).
12 Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B.A.: A critical evaluation of indentation techniques for measuring fracture toughness. I. Direct crack measurements, J. Am. Ceram. Soc., 64, 533-538, (1981).
13 Niihara, K.: A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, J. Mat. Sci. Let., 2, 221-223, (1983)
14 Quinn G.D., Bradt R.C.: On the Vickers Indentation Fracture Toughness Test, J. Am. Ceram. Soc., 90 [3], 673-680, (2007).
15 Chantikul, P., Anstis, G.R., Lawn, B.R., Marshall, D.B.A.: A critical evaluation of indentation techniques for measuring fracture toughness. II. Strength method, J. Am. Ceram. Soc., 64, 539-543, (1981).
16 Toraya, H., Yoshimura, M., Somiya, S.: Calibration Curve for Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-Ray Diffraction, J. Am. Ceram. Soc., 67, 6, C119-121, (1984).
17 Mendelson, M.I.: Average grain size in polycrystalline ceramics, J. Am. Ceram. Soc., 52, 443, (1969).
18 Patterson, A.L.: The Scherrer formula for X-Ray particle size determination, Physical Review, 56, 978-982, (1939).
19 Lange, F.F., Hirlinger, M.: Hindrance of Grain Growth in Al2O3 by ZrO2 Inclusions, J. Am. Ceram. Soc., 67 [3], 164-168, (1982).
Copyright
© 2010 Göller Verlag