Articles
All articles | Recent articles
Synthesis of PLLA-HA Hybrid Composites with Bone-Like Structure
J. Zhang, D. Jiang, Z. Chen, Q. Lin, Z. Huang
The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
received July 02, 2010, received in revised form August 30, 2010, accepted September 23, 2010
Vol. 2, No. 1, Pages 39-46 DOI: 10.4416/JCST2010-00030
Abstract
Many studies are currently underway to make synthetic bone-like materials with compositions of polymeric materials and hydroxyapatite (HA). In this paper, we report on the biomimetic preparation of poly-L-lactic acid (PLLA)/HA composites. Initially, HA nanorods with well-oriented organization were prepared with a simple hydrothermal method using dodecyl phosphate, a type of surfactant with a phosphorus head group, as the templating agent. The precipitate clusters consisting of hydroxyapatite nanorods exhibited a well-ordered microstructure. Subsequently, the obtained precipitates were dispersed in PLLA solutions to make slurries for tape casting. After homogenizing and tape casting, the obtained green sheets were further laminated and thermally compressed to form the final PLLA/HA composites. The microstructure and the resulting properties of the composites were investigated. The PLLA/HA composites containing nano-sized hydroxyapatite with structural features close to those of biological apatite make them attractive for bone tissue engineering applications.
Download Full Article (PDF)
Keywords
PLLA, HA, hybrid composites
References
1 de Groot, K.: Effect of porosity and physicochemical properties on the stability, resorption, and strength of calcium phosphate ceramics, Ann. N. Y. Acad. Sci., 523, 227-233, (1988).
2 Weiner, S., Wagner, H.D.: THE MATERIAL BONE: Structure-Mechanical Function Relations, Annu. Rev. Mater. Sci., 28, 271-298, (1998).
3 Chang, M.C., Ko, C.C., Douglas, W.H.: Conformational change of hydroxyapatite/gelatin nanocomposite by glutaraldehyde, Biomaterials, 24, 3087-3094, (2003).
4 Yaylaoğlu, M.B., Korkusuz, P., Örs, Ü., Korkusuz, F., Hasirci, V.: Development of a calcium phosphate-gelatin composite as a bone substitute and its use in drug release, Biomaterials, 20, 711-719, (1999).
5 Bradt, J.H., Mertig, M., Teresiak, A., Pompe, W.: Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation, Chem. Mater., 11, 2694-2701, (1999).
6 Miyaji, F., Kim, H.M., Handa, S., Kokubo, T., Nakamura, T.: Bonelike apatite coating on organic polymers: novel nucleation process using sodium silicate solution, Biomaterials, 20, 913-919, (1999).
7 Ignjatović, N., Tomić, S., Dakić, M., Miljković, M., Plavsić, M., Uskoković, D.: Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials, Biomaterials, 20, 809-816, (1999).
8 Bigi, A., Boanini, E., Panzavolta, S., Roveri, N.: Biomimetic growth of hydroxyapatite on gelatin films doped with sodium polyacrylate, Biomacromolecules, 1, 752-756, (2000).
9 Shanmugasundarm, N., Ravichandran, P., Peddy, P.N., Ramamurty, N., Pal, S., Rao, K.P.: Collagen-chitosan polymeric scaffolds for the in-vitro culture of human epidermoid carcinoma cells, Biomaterials, 22,1943-1951, (2001).
10 Zhao, F., Yin, Y.J., Lu, W.W., Leong, J.C., Zhang, W.Y., Zhang, J.Y., Zhang, M.F., Yao, K.D.: Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds, Biomaterials, 23, 3227-3234, (2002).
11 Yin, Y.J., Ye, F., Cui, J.F., Zhang, F.J., Li, X.L., Yao, K.D.: Preparation and characterization of macroporous chitosan-gelatin beta-tricalcium phosphate composite scaffolds for bone tissue engineering, J. Biomed. Mater. Res., A 67, 844-855, (2003).
12 Hartgerink, J.D., Beniash, E., Stupp, S.I.: Self-assembly and mineralization of peptide-amphiphile nanofibers, Science, 294, 1684-1688, (2001).
13 Kikuchi, M., Itoh, S., Ichinose, S., Shinomiya, K., Tanaka, J.: Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo, Biomaterials, 22, 1705-1711, (2001).
14 Yang, Y., Magnay, J.L., Cooling L., El Haj, A.J.: Development of a Âmechano-active' scaffold for tissue engineering, Biomaterials ,23, 2119-2126, (2002).
15 Park, S.N., Park, J.C., Kim, H.O., Song, M.J., Suh, H.: Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking, Biomaterials, 23, 1205-1212, (2002).
16 Zhang, W., Liao S.S., Cui, F.Z.: Hierarchical self-assembly of nano-fibrils in mineralized collagen, Chem. Mater., 15, 3221-3226, (2003).
17 Zhao, B., Hu, H., Mandal S.K., Haddon, R.C.: A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes, Chem. Mater., 17, 3235-3241, (2005).
18 Descalzo, A.B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., Rurack, K.: The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials, Angew. Chem. Int. Edn., 45, 5924-5948, (2006).
19 Stupp, S.I., Braun, P.V.: Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors, Science, 277, 1242-1248, (1997).
20 Chen, H.F., Clarkson, B.H., Sun, K., Mansfield, J.F.: Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure, J.Colloid. Interface Sci., 288, 97-103, (2005).
21 Chen, J.D., Wang, Y.J., Wei, K., Zhang, S.H., Shi, X.T.: Self-organization of hydroxyapatite nanorods through oriented attachment, Biomaterials, 28, 2275-2280, (2007).
22 Ye, F., Guo, H.F., Zhang, H.J., Biomimetic synthesis hydroxyapatite mediated surfactants, Nanotechnology, 19, 245605, (2008).
23 Vainionpää, S., Rokkanen, P., Törmälä, P.: Surgical applications of biodegradable polymers in human tissues, Prog. Polym. Sci., 14, 679-716, (1989).
24 Edlund, U., Albertsson, A.C.: Degradable polymer microspheres for controlled drug delivery, Adv. Polym. Sci., 157, 67-112, (2002).
25 Sarazin, P., Roy, X., Favis, B.D.: Controlled preparation and properties of porous poly (L-lactide) obtained from a co-continuous blend of two biodegradable polymers, Biomaterials, 25, 5965-5978, (2004).
26 Ylinen, P.: Filling of bone defects with porous hydroxyapatite reinforced with polylactide or polyglycolide fibers, J. Mater. Sci. Mater. Med., 5, 522-528, (1994).
27 Hofmann, G.O.: Biodegradable implants in traumatology – a review on the state-of-the-art, Arch. Orthop. Trauma. Surg., 114, 123-32, (1995).
28 Bostman, O.M.: Metallic or absorbable fracture fixation devices. A cost minimization analysis, Clin. Orthop. Relat. Res., 329, 233-239, (1996).
29 Leclerc, E., Furukawa, K.S., Miyata, F., Sakai, Y., Ushida, T., Fujii, T.: Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications, Biomaterials, 25, 4683-4690, (2004).
30 Leiggener, C.S., Curtis, R., Muler, A.A., Pfluger, D., Gogolewski, S., Rahn, B.A.: Influence of copolymer composition of polylactide implants on cranial bone regeneration, Biomaterials, 27, 202-207, (2006).
31 Osther, P.J., Gjode, P., Mortensen, B.B., Bartholin, J., Gottrup, F.: Randomized comparison of polyglycolic acid and polyglyconate sutures for abdominal fascial closure after laparotomy in patients with suspected impaired wound healing, Br. J. Surg., 82, 1080-1082, (1995).
32 Aguilar, C.A., Lu, Y., Mao, S., Chen, S.C.: Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers, Biomaterials, 26, 7642-7649, (2005).
33 Wood, J.S., Frost, D.B.: Results using the biofragmentable anastomotic ring for colon anastomosis, Am. Surg., 59, 642-644, (1993).
34 Verheyen, C.C.P.M., de Wijn, J.R.., van Blitterswijk, C.A., de Groot, K., Rozing, P.M.: Hydroxylapatite/poly(L-lactide) composites: an animal study on push-out strengths and interface histology, J. Biomed. Mater. Res., 27, 433-444, (1993).
35 Yasunaga, T., Matsusue, Y., Furukawa, T., Shikinami, Y., Okuno, M., Nakamura, T.: Bonding behaviour of ultrahigh strength unsintered hydroxyapatite particles/poly(L-lactide) composites to surface of tibial cortex in rabbits, J. Biomed. Mater. Res., 47, 412-419, (1999).
36 Wang, G.C., Meng, F.H., Ding, C.X., Chu, P.K., Liu, X.Y: Microstructure, bioactivity and osteoblast behavior of monoclinic zirconia coating with nanostructured surface, Acta Biomaterialia, 6, 990-1000, (2010).
37 Landi, E., Tampieri, A., Celotti, G., Sprio, S.: Densification behaviour and mechanisms of synthetic hydroxyapatites, J. Eur. Ceram. Soc., 20, 2377-2387, (2000).
38 Rodríguez-Lorenzo, L.M., Vallet-Regí, M.: Controlled Crystallization of Calcium Phosphate Apatites, Chem. Mater., 12, 2460-2465, (2000).
39 Kasuga, T., Ota, Y., Nogami, M., Abe, Y.: Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibres, Biomaterials, 22, 19-23, (2001).
Copyright
© 2010 Göller Verlag