Articles
All articles | Recent articles
2.5Y-TZP from Yttria-Coated Pyrogenic Zirconia Nanopowder
Frank Kern
Institut für Fertigungstechnologie keramischer Bauteile, Universität Stuttgart, (Institute for Manufacturing Technologies of Ceramic Components and Composites, University of Stuttgart) D-70569 Stuttgart, Allmandring 7b
received March 16, 2010, received in revised form April 12, 2010, accepted April 16, 2010
Vol. 1, No. 1, Pages 21-26 DOI: 10.4416/JCST2010-00005
Abstract
Thanks to their high strength and toughness, yttria-stabilized zirconia polycrystals (Y-TZP) have become one of the most important structural ceramics for engineering and biomedical applications. In this study 2.5Y-TZP powder was produced from monoclinic pyrogenic nanopowder with a nitrate coating and calcination process. The powders were consolidated by hot pressing to obtain specimens for mechanical testing, phase analysis and microstructural investigation. Bending strength, toughness, microstructure and transformability of the nano-TZP were determined depending on sintering temperature in the range 1300-1500 °C. The materials produced showed a combination of high toughness (9-10 MPa·√m) and strength (1000-1200 MPa). While the toughness showed little variation with sintering temperature, the best strength was observed at low sintering temperatures with materials of extremely fine grain size.
Download Full Article (PDF)
Keywords
zirconia, nanopowder, hot-pressing, powder coating, Y-TZP
References
1 Hannink, R., Kelly, P., Muddle, B., Transformation Toughening in Zirconia-Containing Ceramics, J. Am. Ceram. Soc., 83 [3], 461- 87, (2000).
2 Swain, M.V., Grain size dependence of toughness and transformability of 2 mol-% Y-TZP ceramics, J. Mat. Sci. Lett., 5, 1159-62, (1986).
3 Tsukuma, K., Ueda, K., Strength and fracture toughness of isostatically hot-pressed composites of Al2O3 and Y2O3 partially stabilized ZrO2, J. Am. Ceram. Soc., 68 [1], C-4-C-5, (1985).
4 Jiang, D., Van der Biest, O., Vleugels J., ZrO2-WC nanocomposites with superior properties, J. Eur. Ceram. Soc. 27, 1247-1251, (2007).
5 Ruiz, L., Readey, M.J., Effect of heat treatment on grain size, phase assemblage and mechanical properties of 3 mol-% Y-TZP, J. Am. Ceram. Soc. 79 [9], 2331-2340, (1996).
6 Chevalier, J., et. al., The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends, J. Am. Ceram. Soc., 92 [9], 1901-1920, (2009).
7 Basu, B., Vleughels J.,Van der Biest, O., Toughness tailoring of yttria-doped zirconia ceramics, Mat. Sci. Eng. A 380, 215-221, (2004).
8 Burger, W., et. al., New Y-TZP powders for medical grade zirconia, J. Mat. Sci.: Mat. in Medicine 8, 113-118, (1997).
9 Yuan, Z.X., Vleugels, J., Van der Biest, O., Preparation of Y2O3-coated ZrO2 powder by suspension drying, J. Mat. Sci. Let. 19, 359- 361, (2000).
10 Chevalier, J., Cales, B., Drouin, J.M., Low-Temperature Aging of Y-TZP Ceramics, J. Am. Ceram. Soc., 82 [8] 2150-4, (1999).
11 Lange, F.F., Transformation toughening Part 3: Experimental observations in the ZrO2- Y2O3 system, J. Mat. Sci. 17, 240-246, (1982).
12 Singh, R., et al., Sintering, microstructure and mechanical properties of commercial Y-TZPs, J. Mat. Sci. 31, 6055-6062, (1996).
13 Piconi, C., et al., Y-TZP ceramics for artificial joint replacements, Biomaterials 19, 1489 -1494, (1998).
14 Yuan, Z., Vleugels, J., Van der Biest, O., Synthesis and characterisation of CeO2 -coated ZrO2 powder-based TZP, Mat. Let. 46, 249-254, (2000).
15 Vleughels, J., et. al., Characterization of (Nd,Y)-TZP ceramics prepared by a colloidal suspension coating technique, J. Eur. Ceram. Soc. 27, 1339-1343, (2007).
16 Vasylkiv, O., Sakka, Y., Skorokhod, V., Low-Temperature Processing and Mechanical Properties of Zirconia and Zirconia-Alumina Nanoceramics, J. Am. Ceram. Soc., 86 [2], 299-304, (2003).
17 Chen, D., Mayo, M., Rapid rate sintering of nanocrystalline ZrO2 – 3mol% Y2O3, J. Am. Ceram. Soc. 79 [4], 906-12, (1996).
18 Niihara, K., A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, J. Mat. Sci. Let., 2, 221-223, (1983).
19 Anstis, G. R., Chantikul, P., Lawn, B. R. and Marshall, D. B. A., A critical evaluation of indentation techniques for measuring fracture toughness. I. Direct crack measurements, J. Am. Ceram. Soc., 64, 533-538, (1981).
20 Mendelson, M.I., Average grain size in polycrystalline ceramics, J. Amer. Ceram. Soc. 52, 443, (1969).
21 Toraya, H., Yoshimura, M., Somiya, S., Calibration Curve for Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-Ray Diffraction, J. Am. Ceram. Soc., 67, 6, C119-121, (1984).
22 Scott, H.G., Phase relationships in the zirconia-yttria system, J. Mat. Sci. 10, 1527-1535, (1975).
23 Sheu, T.,Tien T., Chen, I.W., Cubic-to-Tetragonal (t') Transformation in Zirconia-Containing Systems, J. Am. Ceram. Soc. 75 [5], 1108-16 (1992).
24 Miller, R.A., James, L., Smialek, J.L., Garlick, P.G., Phase Stability in Plasma-Sprayed, Partially Stabilized Zirconia-Yttria; in: A. H. Heuer and L. W. Hobbs (Eds.), Advances in Ceramics, Vol. 3, Science and Technology of Zirconia. American Ceramic Society, Columbus, OH, 241-53, (1981).
25 Vleugels, J., Yuan, Z.X., Van der Biest, O., Mechanical properties of Y2O3/Al2O3-coated Y-TZP ceramics, J. Eur. Cer. Soc. 22, 873-881, (2002).
26 Tsubakino, H., Sonoda, K., Nozato, R., Martensite transformation behaviour during isothermal ageing in partially stabilized zirconia with and without alumina addition, J. Mater. Sci. Lett., 12, 196-8, (1993).
Copyright
© 2010 Göller Verlag
Acknowledgments
The help of IFKB staff in materials preparation and characterization is gratefully acknowledged.