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Abstract
The use of the surface temperature and the mass of a limestone sample or sample conversion degree as variables

present in various models of limestone calcination is shown in the paper. The linear model of the thermal dissociation
rate of a large limestone sample is derived using the R program and the base of B -splines. The statistical significance of
the formulated model is demonstrated. The example of the model recording of the thermal dissociation rate of a large
limestone sample as a function of heating conditions, including the sample heating time, is shown. The values of the
basis functions contained in the regression matrix have been identified. Moreover, the formulas for non-zero cubic
basis functions in the selected span knot of the explanatory variable are derived.
Keywords: Limestone, thermal dissociation, thermal analysis, statistical modelling, regression splines

I. Introduction
Modelling of the process of limestone thermal decom-

position in industrial kilns was initiated by Zawadzki and
Bretsznajder 1 – 5 based on the course of the reaction in sin-
gle-variable reaction systems:

A B Csolid gas solid � (1)

in which, i.a, the equilibrium CO2 pressure of the system:

CaCO CaO CO HT3 2�    ○
(2)

was studied as a function of system temperature, and
HT

○ is the enthalpy of dissociation of calcium carbonate
at temperature T.
Hills 6 studied the thermal dissociation mechanism of
spheres with diameters of about 1.1 cm and 2.3 cm, made
of calcite grains compressed and sintered in a CO2 atmo-
sphere. In his experiments, he measured the temperature
at the geometric centre of the thermally dissociated sam-
ple and its mass. The sample was dissociated in a stream
of air mixture with a known content of carbon dioxide.
He generalised the results of his experiments into three
models of thermal dissociation of samples, which relate
the CO2 pressure at the reaction front to the temperature
of the front. They are:
– model of linear dependence of the partial pressure of

CO2 at the reaction front on the reaction front tem-
perature, derived with the assumption of a small differ-
ence between the temperature of the gaseous mixture
surrounding the dissociated sample and the tempera-
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ture of the dissociation reaction front occurring inside
the sample

– model of exponential dependence of the partial pres-
sure of CO2 at the reaction front on the temperature of
the front resulting from the van‘t Hoff isotherm 7,

– the pseudo-steady-state model, which takes into ac-
count the heat needed to heat the dissociating sample
from the initial temperature to the temperature of the
dissociation reaction front.

The above models relate the rate of the reaction front
movement to the reaction front temperature and the tem-
perature of the gas mixture surrounding the decomposed
sample. In the derivation of the equations of the above
models, the equality of the sample surface temperature and
the temperature of the gas mixture surrounding the ther-
mally dissociated sample was assumed. The shrinking core
model 8 was assumed in the description of the thermal dis-
sociation reaction front of the samples.

Verma 9 used the shrinking core model in both describ-
ing the thermal dissociation reaction of a 10-cm-diameter
spherical limestone charge and the combustion of a 5-cm-
diameter spherical coal grain in a coal-fired shaft kiln for
lime production. The temperature of the dissociation front
was related to the surface temperature of the dissociated
charge in the model equation for the conducted heat flux
to the thermally dissociated limestone sphere. This flux is
the sum of the heat needed for the thermal dissociation re-
action of the limestone and the heat needed to heat the aris-
ing calcium oxide layer.

Khinast et al. 10 modelled the influence of the partial
pressure of CO2 and the size of limestone grains on their
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thermal dissociation rate limited by the chemical reac-
tion rate and/or by the diffusion of carbon dioxide in the
grain pores. The model of thermal dissociation of lime-
stone grains derived by Khinast et al. 10, called the reacting
particle model, is the result of thermal dissociation studies
of limestone grains containing 96.1 wt% CaCO3, 1.8 wt%
MgCO3 + H2O, 2.1 wt% inert substance. Furthermore,
the average grain diameters of the three studied fractions
were: 7.5 lm, 56.5 lm and 90 lm. The model differs from
the shrinking core model by assuming thermal dissocia-
tion of the particles occurring not only on a spherical sur-
face of the reaction front, but also the formation of car-
bon dioxide in the network of pores present in limestone
and evolving during thermal dissociation of the particle.
In addition, the model assumes the existence of a bound-
ary layer at the surface of the reacting particle, called a gas
film, and the invariability of the grain diameter. The model
mass transport equations include the conversion rate tak-
ing into account the change in mass of the calcined parti-
cle. In turn, the equation of heat transport to the surface of
the dissociating particle contains the particle surface tem-
perature. The system of model equations also includes an
equation for the rate of reaction containing a parameter K
depending on the value of a function of carbon dioxide par-
tial pressure f(CO2) and calculated from the formula:

K k f CO   2 (3)

where: k is the rate constant for the reaction.
The course of thermal dissociation process of limestone

particles is important for the quality of produced lime.
Lime is a basic chemical product with many applications.
Hence, the interest of technologists and designers in the
lime industry in the organisation of lime firing. Boynton 11

lists ten critical variables affecting lime quality and pro-
ductivity. Among these variables, he considers the calci-
nation rate and the temperature and duration of calcina-
tion to be the variables of the highest importance, which
is consistent with the conclusions drawn from the models
discussed above, which focused on the movement of the
reaction front in the particle.

He emphasises that each limestone is characterised by its
own properties, which means that the process parameter
values for a particular limestone and kiln are generally se-
lected based on the trial and error method. Otherwise, the
results of thermal dissociation of the limestone, including
product quality, are unpredictable.

A similar point of view is held by Oates 12 considering
the transport of heat to the reaction front and the transport
of released carbon dioxide to the outside of the calcined
particle. He states that the most important variables on
which the output and quality of the produced lime depend
are the temperature distribution in the calcination zone
and the rate of heat transfer between the calcined particle
and its surroundings.

Mathematical modelling of the thermal dissociation of
limestone raw meal occurring in a rotary kiln for the pro-
duction of cement clinker is a very difficult issue due to
the complexity of heat transfer processes, mass transport,
chemical thermodynamics, and mineralogical reactions.

Locher 13, 14 built a mathematical model of cement clink-
er production using heat and mass balance. He formed the
model primarily due to the significance of the influence of
respective variables on the calculated steady-state param-
eters of all processes and unit operations involved in ce-
ment clinker production. He distinguished the tempera-
ture of grains of calcined raw meal assuming the equality of
this temperature with the temperature of gases surround-
ing the particles during calcination. Particles of calcined
raw meal are very finely ground, e.g. in a stream of these
particles, the residue on a sieve with 4 900 mesh/cm2 is less
than 10 %. Another important parameter of the model is
the degree of thermal dissociation of CaCO3, which re-
sults in the formation of CaO depending on the tempera-
ture of the charge flux.

Martins et al. 15, 16 developed a one-dimensional steady-
state model of the calcination of a limestone charge in a ro-
tary kiln. He included differential equations for mass and
heat balance in the model and used the Hills model 6 to cal-
culate the thermal dissociation rate of charge particles with
diameters up to about 23 mm. In the equations of heat ex-
change occurring in the rotary kiln volume between the gas
filling it, the charge particles, and the inner wall of the kiln,
one of the variables is the particle surface temperature. The
model allows the evaluation of the impact of changes in the
furnace operating parameters on its efficiency and product
quality.

Modelling of the thermal dissociation of the charge in a
shaft kiln for lime production and optimising the kiln de-
sign together with optimising the process parameters is the
subject of work by Gordon et al. 17, 18. The system of mod-
el equations includes the mass exchange equation, in which
the rate of thermal dissociation of the charge depends,
among other things, on the surface temperature of disso-
ciated lumps (particles) of charge. In turn, the assumption
of a vortexless flow of gases in the furnace shaft and the in-
troduction of the stream function w into the model enable
the optimisation of its design and operation.

In their analysis of calcination models of fine limestone
particles, Stanmore et al. 19 consider the influence of lime-
stone properties on the calcination process and the proper-
ties of the product, the kinetics of the process, the effect of
carbon dioxide, water vapour and particle size on the calci-
nation rate. The shape of the reaction front assumed in the
model affects the dependence of the dissociation rate on
the local concentration of carbon dioxide, which is direct-
ly unmeasurable. Therefore, depending on the kind of cal-
cined limestone, different reaction front models are used,
including a grain model with changing size 20.

In the analysis of calcination of limestone in the calcina-
tion zone of a shaft furnace, Bes 21 adopted the shrinking
core model to describe the shape of the dissociation reac-
tion front. The system of model equations included the
heat balance for the gas and charge fluxes flowing in the
furnace shaft and the limestone dissociation rate equation.
The temperature distributions of: the surface of the cal-
cined charge lumps, the gas mixture, and the core of the
calcined charge lumps were the result of solving of the sys-
tem. Calculation of the above temperature distributions
requires a number of iterations to achieve convergence
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of the assumed and calculated charge conversion rates in
the calcination zone. The need for the iterative calculation
method resulted from the assumption of the amount of
heat consumption in each shaft zone.

Thermal dissociation of calcium carbonate 2 is a re-
versible topochemical reaction 22 in which in the parent
calcium carbonate crystal structure CaCO3 the ions CO2-

3
are changed to O2- ions with the liberation of gaseous
CO2 which causes heterophase fluctuations 1 – 5. The for-
mation of such fluctuations is mainly possible in areas
of disorder on the surface of the dissociated crystal or in
the near-surface layer. The liberated CO2 molecules can
come not only from the surface of the crystal but also from
deeper places. In general, thermal dissociation starts at the
surface of the crystal and moves to its centre.

The liberated CO2 on the thermal dissociation front of
limestone, e.g. in a shaft furnace, is removed from the sur-
face of a calcined lump by the gas mixture stream flowing
in the furnace shaft. The transport of CO2 from the surface
of the calcined lump by the gas stream flowing around the
lumps is called Stefan flow 23. Diffusion of CO2 from the
surface of the calcined lump to the flowing gas mixture also
occurs due to the concentration difference of CO2 on the
surface of calcined limestone lump and in the stream of the
gas mixture flowing around the lump. Therefore, the total
removal flux of CO2 contains two components resulting
from: the Stefan flow and the diffusive flow described by
Fick‘s law.

Specht‘s work 23 includes a mathematical model of the
thermal dissociation of a limestone charge in a shaft fur-
nace. In this model, a shrinking core model is used to de-
scribe the reaction surface, which takes into account the
thermal dissociation reaction properties of the calcium
carbonate crystal discussed above. The removal of CO2
from the calcined grain surface by Stefan flow and diffusive
flow was also assumed. The set of eight equations includ-
ed in the model is used to determine the parameters sought,
including the surface temperature of calcined grain and ra-
dius of the unreacted core, which is the measure of the dis-
sociation ratio. The study of the temperature front of the
thermal dissociation reaction of large grains with a diame-
ter of 25 mm originated from different limestones and car-
ried out at 1 050 °C in air shows that the rate of the process
is limited by heat transport and reaction kinetics. On the
other hand, in the case of calcination of fine grains with a
size measured in μm, the thermal dissociation process is
limited by the chemical reaction rate. The same happens in
the low temperature range of thermal dissociation.

In the work by Hallak et al. 24, 25, 26, a system of equa-
tions of a one-dimensional mathematical model of heating
a spherical charge in a shaft furnace is written. The mod-
el consists of ordinary differential equations derived from
mass and heat balances prepared for a charge layer of thick-
ness dz and a stationary state. The z coordinate is calculat-
ed on the charge thickness. A shrinking core model was
adopted to describe the thermal dissociation of the charge
grains. It was assumed that fuel and secondary air are in-
troduced at the same level uniformly across the cross-sec-
tion of the charge. The uniformity of the temperature dis-
tribution of the gas mixture and the charge temperature, as

well as the degree of charge conversion in the cross-section
of the shaft, was assumed. As a result of the calculations,
according to the model, axial temperature distributions of
the gas mixture, the surface of the calcined charge, the core
of the grains, the average temperature of the grains and the
degree of conversion of the charge are obtained. The model
is used to optimise the calcination of charge from the point
of view of heat consumption and the quality of product. It
is also used to train kiln operators. It can be used to anal-
yse the influence of parameters such as grain size distribu-
tion of the charge, heat input to the furnace shaft, furnace
output, type of fuel used, properties of the limestone to be
calcined, etc. on the calcination process and lime quality.
Lime firing is a highly energy-intensive thermal process in
any lime production method. Therefore, optimization of
lime firing is essential as, according to Piringer 27, the fir-
ing costs make up 20 – 50 % of the production costs, and
in order to protect the environment.
Optimising the thermal efficiency of the process is cur-
rently achieved mainly based on mathematical modelling
of:
– the firing process taking into account the modelling of

thermal dissociation of limestone occurring inside the
calcined grain,

– flow of gas and charge fluxes in furnace shaft,
– shape of the furnace shaft.

The above-cited models of thermal dissociation of cal-
cite or limestone grains always include two variables in
their system of equations: the surface temperature of the
thermally dissociated grain and its actual mass or degree of
conversion. The surface temperature of the calcined charge
grain can be a given variable or a variable known from mea-
surements in design and optimisation calculations. It can
also be a variable calculated on the basis of a system of fur-
nace model equations with assumptions concerning, e.g.
the distribution of heat flux entering the charge.

Changes in the properties of a substance caused by trans-
ferred heat are studied with thermal analysis methods dis-
cussed e.g. by Brown 28. In these methods, the change in
a tested substance property is recorded as a function of
the temperature of the substance and the conditions un-
der which the substance is heated or cooled.

Hence, the aim of this paper is to apply the one-dimen-
sional method of splines, which is part of the nonparamet-
ric regression included in the works by e.g. Hastie et al. 29,

Trzęsiok et al. 30, for a description of surface temperature
or mass variation of a calcined limestone large sample as a
function of thermal dissociation time. Statistical modelling
of the distributions of these variables over time was carried
out using the R language and computing environment 31

for statistical calculations and drawing up plots to facili-
tate their interpretation.

As already mentioned, this approach can also be used for
analytical description of the results obtained with different
thermal analysis methods.



68 Journal of Ceramic Science and Technology —R. Lech, S. Sado Vol. 13, No. 2

Table 1: Chemical composition of the marble.

Loss on ignition
(1 000 °C/1h)*

[%]

Moisture
content
(105 °C)

[%]

SiO2
[%]

Content of in-
soluble residue

[%]

Fe2O3
[%]

Al2O3
[%]

CaO
[%]

MgO
[%]

SO3
[%]

Sum
[%]

43.70 0.03 0.12 0.00 0.0 0.09 55.30 0.64 <0.02 99.85

*Moisture content is included in the loss on ignition.

Table 2: Density, apparent density, volume of macro- and micropores, total porosity of the marble.

Density Apparent density

Mean value
q

g/cm3

Standard
Deviation

Sq
g/cm3

Mean value
qa

g/cm3

Standard
Deviation

Sqa
g/cm3

Volume of
macro and micropores

Vpor.
cm3/g

Total porosity
x
%

2.74 0.002 2.74 0.004 0.00 0.00

II. Experimental

(1) Materials
The samples were made of the Precambrian calcite mar-

ble “White Marianna”, which is a crystalline, coarse-
grained precious marble. It is white with shades of grey
and brown 32. The chemical composition of the marble
was determined according to the standard “Limestone
and unslaked and hydrated lime -chemical analysis” PN -
76/B -04350. The results of the analysis are summarised in
Table 1 33.

The density of the marble was determined with the he-
lium method using a Micromeritics AccuPyc 1330 heli-
um pycnometer. The volume of the samples was deter-
mined using pure helium. Before measurement, the sam-
ples were pre-desorbed by rinsing ten times with pure he-
lium. Five measurements were taken for each sample. The
apparent density was determined with the powder method
using a GeoPyc 1360 density analyser from Micromeritics.
DryFlo powder was used to determine the apparent den-
sity. The instrument was calibrated using model shapes.
The measurement series consisted of ten measurements.
The analysis of the total volume of macro- and mesopores
was also performed and the total porosity of the marble
was determined. The results of the measurements are sum-
marised in Table 2 34. These are within the value ranges of
rock physical properties reported in the literature 32.

(2) Method of thermal decomposition of the sample
A marble sample with a diameter d ≅ 49.2 mm shown in

Fig. 1. was used in the experiment. The sample is cylin-
drical in shape with a diameter-to-height ratio of approx-
imately 0.97. A shallow hole is drilled in the specimen
sidewall for fastening of the S-type thermocouple junc-
tion (PtRh10%-Pt, PN-EN 60584 – 1:2014 – 04) for mea-
suring the surface temperature of the sample. The sample
is placed in a vertical cylindrical heating chamber of an
electric furnace. A heated mixture of air and carbon diox-
ide with cCO2 = 45.16 % flows into the chamber. The fur-
nace is equipped with a digital indicating controller FCD -

100 from Shinko with a sensor type S and fuzzy self-tun-
ing PID. The controller is used to modify the temperature
of the heating chamber based on input of the values for
the heating time and the heating chamber temperature are
shown in Fig. 2. During calcination of the sample, the tem-
perature at the side of the sample and the current weight
of the sample i.a. are recorded. The temperature and mass
readings of the calcined sample were taken at equal ap-
proximately 90-second intervals. A detailed description of
the experiment is included in Lech 33, 34.

III. Results

(1) Sample surface temperature variability during ther-
mal dissociation

Fig. 3. shows a scatterplot of the temperature measure-
ment results at a selected point on the surface of the heated
sample. The plot was made using plot(x, y, …), points(x,y,
…) and the par() and legend() functions of the R program:
> par(mar=c(5.1,4.1,4.1,2.1)+0.1)
> legend(11500,600,legend=c(“measurement
point”),pch=1,cex=1.4,col=“black”,bty=“n”)

The scatterplot of the measured points of the heated sam-
ple surface temperature is similar to the plot of the furnace
heating curve shown in Fig. 2. During the thermal disso-
ciation period of the sample, the heat consumption by the
energy-consuming thermal dissociation reaction of calci-
um carbonate is so large that the arrangement of measur-
ing points during part of the thermal dissociation period
is convex in the direction opposite to the direction of the
ordinate axis. This observation will be taken into account
during the choice of the degrees of freedom number of
the polynomial splines bs() and the natural cubic splines
ns() contained in the computational environment R. The
wave-shaped arrangement of the sample surface temper-
ature measurement points, visible mainly during the pre-
heating period, is caused by thermal inertia of the furnace
heating system and auto-tuning of the temperature con-
troller.
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Fig. 1: Scheme of heating system for measurement of the mass and
surface temperature of a thermally dissociated limestone sample in
a heating chamber: 1 – cylindrical sample, 2 - cylindrical wall of the
heating chamber, 3 – thermocouple junction.

Fig. 2: The heating time and heating chamber temperature values
programmed in the temperature controller.

(2) Sample mass variability during thermal dissociation
The scatterplot of the measurement points of the heat-

ed sample mass is shown in Fig. 4. Thermal dissociation of
the sample was performed until the mass of the sample was
fixed, as is visible in this plot. In the first part of the ther-
mal dissociation period of the sample, it can be seen that
the scatter of the measurement points indicates a convexity
of the plot of the relationship under study in the ordinate
axis direction. However, the direction of the convexity is
changed in the second period of calcination. The above ob-
servation will be used in selecting the degrees of freedom
number of functions bs() and ns() when plotting the de-
pendence of calcined sample mass vs. calcination time.

Fig. 3: Scatterplot of the surface temperature measurement results of heated sample vs. heating time.
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Fig. 4: Scatterplot of the mass measurement results of heated sample vs. heating time.

IV. Discussion

(1) Concise about nonparametric regression and splines
of degree M and knots nj, j = 1,2,…, K, that is, with B-
splines as a nonparametric regression method using the
programming language R

The regression analysis, discussed, e.g. by Aczel et al. 35,
Neter et al. 36, of the relationship under study performed
using the least squares error method requires that the er-
ror components ei in successive observations xi meet the
following assumptions:
– the error components ei are normally distributed,
– the expected value of the error components ei is E{ei} =

0,
– the variance of the error components ei is constant, i.e.,

r2{ei} = r2,
– the error components ei of the successive observations

xi are statistically independent.
Non-parametric regression methods, including the re-

gression splines used in this paper to build a regression
model of the thermal dissociation rate of a limestone sam-
ple vs. a random explanatory variable, i.e. a sample sur-
face temperature, do not require the above-mentioned as-
sumptions relating to the random components of regres-
sion model. As Trzęsiok et al. 30 point out, when applying
these methods, it is not necessary to know the analytical
form of the relationship between the response variable and
explanatory variable. The nonparametric approach to re-
gression consists in choosing the sought function f(Xt|bt)
from the family of smooth functions, where Xt is the ex-
planatory variable and bt is its parameter. Therefore, in this
case, the number of possible model fits to the given data
set is much larger, as Faraway 37 points out. This is used
in the construction of nonlinear models or in cases where

there is, e.g., a correlation between explanatory variables.
In statistics, splines are used for analytical description of
the shape of flexible curves or flexible curved surfaces.

The calculations necessary for the aforementioned appli-
cation of the method were performed using bs() and ns()
functions included in the popular R computing environ-
ment, widely used in university teaching of statistics. Fol-
lowing the publication of the paper by Hastie et al. 38, ad-
vances in computational methods have resulted in the con-
solidation of spline modelling in statistical regression anal-
ysis. In particular, this approach is suitable for statistical
modelling of nonlinear dependences of continuous vari-
ables using cubic splines.

The purpose of regression splines is to express the re-
sponse variable Y using a piecewise polynomial spline
f(X). The degree of the splines, the number of knots, and
their position is determined with this method. In addition,
the family of splines is parameterised by taking the number
of basis functions or the number of degrees of freedom.

Let X be a vector of length N of an explanatory
quantitative variable with non-decreasing real values

X � contained in the interval xi Î [a, b]. The domain
of the variable X is divided by a knot sequence n = (n1,
…, nK) such that n1 ≤ n2 ≤…≤, nK into disjoint intervals
[nj,nj+1) with K ≤ N. The points nj are called knots. The
smallest and largest values of the domain X are called the
boundary knots and are written in terms of n0 and nK+1. In
each interval defined by the knots nj, the piecewise poly-
nomial spline sought is written using different polynomial
functions of the form:

Y X X Xd
d

d
d    

   0 1 1
1.. . (4)

where: ad is a coefficient, where d = 0,1, … , M-1 is the de-
gree of a partial polynomial in the interval [nj,nj+1) and M
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is the degree of the piecewise polynomial spline generally
taking the values 1, 2, 4.

Definition of spline
A spline of degree M with knots nj, where j = 1,…,K, is

a piecewise polynomial function of degree M with contin-
uous derivative up to degree (M -2), with M = 4 for cubic
splines as pointed out by e.g. Hastie et al. 29, Lis 39, and de
Boor 40. Restricting ourselves to the univariate function,
where X � , the spline f(X) is a smooth function of the
form of a power series:

f X X X
m

M

m
m

j

K

j j

M
     










 
1

1

1

1
   (5)

where: bm, ϑj are coefficients, m = 1, …, M, and further-
more:

X
X if X

if Xj
j j

j

  
 









 
0 (6)

Additional restrictions can be imposed on the above
function in the form of linearity of this function beyond
the edge nodes. Then for X < n1 and X > nK, it is as-
sumed that the second derivative in these nodes is zero,

i.e.   f 1 0 and   f K 0 . The spline obtained under

these assumptions is called a natural cubic spline.
A trade-off has to be considered for splines between in-

creasing the number of knots, which may lead to an over-
fitting of the model to the data and an increase in variance
and decreasing the number of knots, which in turn may re-
sult in a higher model bias.

B – spline basis for polynomial splines
The B - splines set consisting of polynomial splines is

called the B – splines base. Let the unknown function f(X)
be estimated using a spline with the assumed internal knots
vector n and degree M = d+1, which can be written with the
equation:

f X B X
j

K d

j j    


 


1

1

 (7)

where: Bj is the set of basis functions and bj are the coeffi-
cients associated with these functions.

Thus, Equation [7] is linear due to the coefficients bj,
which reduces the estimation of the function f(X) to a
linear optimization problem in the transformed variables
B1(X), B2(X),…, BK+d+1(X). Thus, modelling of the func-
tion f(X) using splines reduces to the estimation of a small
set of coefficients.

Splines of assumed degree with fixed knots are called
regression splines. Fixing the number of knots involves
choosing their position. The most commonly used are cu-
bic splines of degree M = 4. The method of splines with
fixed knots is called regression splines 29, 39.

The B - spline basis consists of cubic splines specially
parameterized. An extended set of knots is introduced to
derive the formula for determining the j-th B – spline basis
function of degree d:

     * , . . . , , , , . . . ,( )    d K K d        0 1 1 (8)

for j = -d, …, K + d. Then recursion is applied:

B x
if x

if x
j

j j

j j

,

,

,
0

1

1

1

0
  

  
  











 

 
(9)

whereby:

B xj ,0 0   (10)

if: nj = nj+1. Then - j - th function of degree d of the B
– spline basis is calculated from the Mansfield - de Boor
- Cox formula:

B x
x

B x
x

B xj d
j

j d j
j d

j d

j d j
j d, , ,  




  









 

  
 



 



 1
1

1 1
1 1 

(11)

where: j = -d, … , K + d – s, while s=1, …,d.
The piecewise B - basis polynomial splines Bj,d with

knots n* on the interval (nj,nj+d+1), satisfy, i.a., the follow-
ing conditions:
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d/Bi,d+1 is a piecewise polynomial spline of degree d with
knots in n1, …, nK,
e/For internal knot number k ≥ 1 functions Bj,d+1 belong
to class Cm-2(R), and m < d + 1.

The formula 11 will be used below to find an example of a
basis function. In the practice of using regression splines,
the plot of the model function is usually taken as the result
of the calculation due to the complexity of the relationship
under study.

(2) Use of B - splines for description of the relationship
between temperature of sample surface and heating time
Both the variable “Time” and the variables “Temperature”
and “Mass” are continuous variables. The values of these
variables are in the intervals:
– “Time” xS ∈ [0,209967.09], s,
– “Temperature” T ∈ [295.8,1326.6], K,
– “Mass” M ∈ [150.60,264.94], g.

For the sample whose calcination results were used for
the calculations in this paper, the relationships between
the above variables are shown in Fig. 3. and Fig. 4. The
variable “Time” in Fig. 3. and Fig. 4. is denoted by “s”. The
two response variables in the function are denoted by the
symbols yT and yM.

To replace the scatterplots shown in Fig. 3. and Fig. 4. by
polynomial splines from the B - spline basis, the functions
bs() and ns()are used from the package splines of the R en-
vironment for statistical computing. To achieve the target
under consideration, the value of df in both functions is
given. The value of df corresponds to the number of de-
grees of freedom. The number of internal knots n for the
function bs() is determined using equation:

(12)
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where: df corresponds to the number of degrees of free-
dom, d is the degree of the partial polynomial, is the com-
ponent resulting from the presence of a constant term (in-
tercept = TRUE) in the equation of the spline. Whereas the
number of internal knots for the ns() function is calculated
from the formula:

(13)

The imposition of the polynomial spline bs(splines) with
parameter, e.g. df = 7 on the scatterplot, shown in Fig. 3., is
done with the command:
> lines(xS,fitted(lm(yT∼bs(xS,df=7,intercept=
TRUE))),lwd=2,col=“black”)

The result of applying this command is seen in the left
part of Fig. 5. The linear model in which the dependent
variable is the sample surface temperature and the explana-
tory variable is the result of calling the function bs(xS) with
selected different numbers of degrees of freedom df:
> bT7<-lm(yT∼bs(xS,df=7,intercept=TRUE))
does not reflect the shape of the scatterplot. Increasing the
value of df leads to an increase in the number of intervals nj,
nj+d+1 in the domain of the polynomial spline, which, with
a chosen degree of polynomial, leads to a better fit of the
spline to the scatterplot. Increasing the value of df from 7
to 15 results in a better fit of the spline and the scatterplot
of the sample surface temperature measurements during
heating as seen in the right-hand part of Fig. 5.

The selection of the number of degrees of freedom df for
the best fit of the polynomial spline plot to the scatterplot
of the measurement points with the smallest possible value
of df is made on the basis of the Akaike information criteri-
on (AIC) 29, 41. For this purpose, the AICcmodavg pack-
age is used in the R computing environment. In the range
of values df∈ 7, 15, the set of linear models shown below is
built:

> bT7<-lm(yT∼bs(xS,df=7,intercept=TRUE))
…
>bT15<-lm(yT∼bs(xS,df=15,intercept=TRUE))

They are then ranked as shown in Table 3, which is ob-
tained with the following commands below:
> <-list(bT7, …,bT15)
> model.namesbT <-c(‘bT7’, …,‘bT15’)
> aictab(cand.set = modelsbT, modnames =
model.namesbT) #Tablica 1

K is the assumed number of parameters of the linear re-
gression model shown in Table 3. It was decided that, for
example, the model bT15 would consist of 16 terms. To
calculate the value of K, the assumed number of terms in
the model should be increased by 1, due to the independent
choice of degree of the polynomial function, e.g., degree =
3, as in the present case. Therefore, in the model bT15, the
value of K=15+1=16, as can be seen in Table 3. The number
of 15 terms in the model is shown in detail later in the pa-
per. The values of the information criterion 29, 41 are found
in column AICc and are used to classify the models. The
lower the value of the criterion, the better the model fits the
data. The AICc criterion is an adjusted AIC criterion due
to the small sample size. However, it is considered 42 that
it should also be applied to samples of any size. The AIC-
cWt weight is the proportion of the predictive power of a
given model in relation to the total predictive power of the
full set of models. Cum.Wt is the sum of the weights of cri-
terion AICc. In the analysed case, the best model contains
100 % of the predictive power of the set of tested models.
LL is a measure of the goodness of fit of the model to the
measurement results calculated using the maximum like-
lihood method. The AICc criterion is calculated using K
and LL. From the LL values in Table 3, it can be seen that
the bT15 model is characterised by the maximum value of
the maximum likelihood estimator LL.

Fig. 5: Comparison of the fitted values of sample surface temperature for the models containing terms bs with various degrees of freedom df.
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Table 3: Ranking of bs() models describing the correlation between surface temperature vs. sample heating time made using
the AICc criterion.

Model K AICc Delta_AICc AICcWt Cum.Wt LL

> bT15 16 1484,53 0,00 1 1 -725,02

> bT14 15 1529,95 45,42 0 1 -748,88

> bT13 14 1676,84 192,31 0 1 -823,47

…

> bT7 8 2259,74 775,21 0 1 -1121,55

In the same way, the ns() models of the correlation be-
tween surface temperature and heating time of the speci-
men according to the AICc criterion were ranked. The re-
sults of the calculations for both bs() and ns() models are
graphically presented in the dot plot shown in Fig. 6. Based
on the results shown in Fig. 6, models bs(…, df=15, 6 …)
and ns(…, df=13,…) were selected to describe the depen-
dence of the sample surface temperature vs. heating time.
Both selected models are characterised by the lowest value
of the AICc criterion of the analyzed correlation, although
taking into account the small difference of the AICc values
of the models bs(…,df=14, …) and bs(…, df=15, …), the
model with the parameter df = 14 can be selected. Similar-
ly, the model with df = 12 can be selected in the case of the
ns() models.

By assuming the model bs(…, df=15, …) as the best fit,
a test of statistical significance of the estimators β̂ of the
model and the new model variables is performed. For this
purpose, a new explanatory variable xi ∈ [0,1] with i ∈
[1,235] is introduced, referring to the 235 measurements
taken during the experiment. At the same time, using the
percentiles listed in the notes to the regression matrix of
the bT15u model, the internal knots for the bT15s model
with the new explanatory variable x are determined. The
values of the bT15s model coefficients are obtained with
the following commands:

> bT15u<-bs(xS,df=15,intercept=TRUE)
> bT15u
> x <-seq(from=0, to=1, length=235)
> knotsbT15u<-c(0.08333333,0.1666667,0.25,
0.3333333,0.4166667,0.50,0.5833333,
0.6666667,0.75,0.8333333,0.9166667)
> bT15s<-bs(x, degree=3, knots=knotsbT15u,
intercept=T)
>fitT<-lm(yT∼bs(x,degree=3,knots=knotsbT15u))
> fitT
> summary(fitT)

Table 4 contains the β̂ estimators for the 14 terms of the
model bs(…,df=15,…) written using the cubic B – spline
basis functions. The results of their statistical significance
tests are also shown. The study area of the independent
variable was divided into 12 intervals using 11 internal
knots. Table 4 shows the p-value, which indicates the sta-
tistical significance of the new model variables.

A similar test was carried out for model ns(…, df=13,…),
the result of which is analogous. The models bs(…, df=15,
…) and ns(…, df=13,…) are shown in Fig. 7 with the plots.
The convergence of the two models is shown in Fig. 7.,
which, in conjunction with the right-hand part of Fig. 5.,
indicates a good fit of the two models and the measurement
results.

Fig. 6: AICc criterion values for the models of sample surface temperature during heating with application of bs and ns functions and various
number of degrees of freedom df.
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Fig. 7: Comparison of the fitted values of sample surface temperature for the chosen models containing the terms of bs(…,df=15,…) and
ns(…,df=13,…) functions.

Table 4: Statistical significance test results for: β̂ estimators of the bs() model terms of sample surface temperature vs. sample
heating time relationship and of the new variables.

Call:
1m(formula = yT - bs(x, degree = 3, knots = knotsbT15u))

Residuals:

Min 1Q Median 3Q Max

-20,2650 -2,2009 0,0975 2,1715 14,3334

Coefficients:

Estimate Std Error t value Pr(>|t|)

(Intercept) 293,481 3,524 83,275 < 2e-16 ***

bs(x, degree = 3, knots = knotsbT15u)1 9,557 6,643 1,439 0,152

bs(x, degree = 3, knots = knotsbT15u)2 -27,601 4,427 -6,235 2,28e-09 ***

bs(x, degree = 3, knots = knotsbT15u)3 454,450 5,056 89,888 < 2e-16 ***

bs(x, degree = 3, knots = knotsbT15u)4 482,595 4,322 111,657 < 2e-16 ***

bs(x, degree = 3, knots = knotsbT15u)5 535,257 4,602 116,298 < 2e-16 ***

bs(x, degree = 3, knots = knotsbT15u)6 642,408 4,422 145,267 < 2e-16 ***

bs(x, degree = 3, knots = knotsbT15u)7 754,101 4,511 167,164 < 2e-16 ***

bs(x, degree = 3, knots = knotsbT15u)8 839,341 4,465 187,990 < 2e-16 ***

bs(x, degree = 3, knots = knotsbT15u)9 880,634 4,502 195,592 < 2e-16 ***

bs(x, degree = 3, knots = knotsbT15u)10 953,073 4,529 210,448 < 2e-16 ***

bs(x, degree = 3, knots = knotsbT15u)11 1031,325 4,683 220,221 < 2e-16 ***

bs(x, degree = 3, knots = knotsbT15u)12 1011,389 5,260 192,287 < 2e-16 ***

bs(x, degree = 3, knots = knotsbT15u)13 1031,962 5,409 190,779 < 2e-16 ***

bs(x, degree = 3, knots = knotsbT15u)14 1031,610 4,984 207,002 < 2e-16 ***

Signif. codes: 0 ‘***’ 0,001 ‘**’ 0,01 ‘*’ 0,05 ‘.’ 0,1 ‘ ’ 1

Residual standard error: 5,471 on 220 degrees of freedom
Multiple R-squared: 0,9997, Adjusted R-squared: 0,9997
F-statistic: 5,608e+04 on 14 and 220 DF, p-value: < 2,2e-16
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It follows from the properties of the ns() function that
for the same number of degrees of freedom, a larger num-
ber of knots is generated in the case of the ns() function,
which usually results in a better model fit to the measure-
ment results. In other words, an increase in the number
of degrees of freedom results in greater variability in the
model fit to the scatterplot of the measurement results as
noted by Hastie et al. 29 and Lis 39.

(3) Use of B – splines for description of the relation-
ship between thermal dissociation rate and temperature
of sample surface

Focusing further on the bs() models, a model of thermal
dissociation rate of a limestone sample vs. sample surface
temperature was fitted in an analogous way. The model
was fitted for the description of the results of the calcu-
lation performed on the basis of the measurement results:
> fitbT9ru<-lm(DissRate∼bs(x,degree=3,knots=
knotsbT9r))

The fit of the linear bT9ru model to the measurement
and calculation results is shown in Fig. 8, while Table 5
shows the calculation results of β̂ estimators of the bT9ru
model terms together with the result of their statistical
significance test. The p-value is also shown and indicates
the statistical significance of the new model variables.

(4) Use of B-splines for description of the relationship
between sample mass and heating time

(a) Choice of a linear model for prediction of sample mass
and analytical expression of the B – spline basis functions

The analysis of the calculation results of the calcined
sample mass vs. heating time relationship is given below.
Similarly as before, it was found that the best descrip-
tion of the relationship under study is given by the mod-
els bs(…,df=10,…) and ns(…,df=9,…). Their comparison
is shown in Fig. 9. The plots of the models do not show any
significant differences. Therefore, further analysis will be
conducted for the bs(…,df=10,…) model.

Table 5: Statistical significance test results for: β̂ estimators of the bs() model terms of sample thermal dissociation rate vs.
sample surface temperature during heating and of the new variables.

Call:
1m(formula = DissRate ∼ bs(x, degree = 3, knots = knotsbT9r))

Residuals:

Min 1Q Median 3Q Max

-0,0125660 -0,0004851 0,0000269 0,0006129 0,0090426

Coefficients:

Estimate Std. Error t value Pr(>|t |)

(Intercept) -2,489e-04 1,043e-03 -0,239 0,81170

bs(x, degree = 3, knots - knotsbT9r)1 6,770e-04 1,939e-03 0,349 0,72735

bs(x, degree = 3, knots - knotsbT9r)2 -8,534e-05 l,256e-03 -0,068 0,94587

bs(x, degree = 3, knots = knotsbT9r)3 8,642e-04 1,474e-03 0,586 0,55817

bs(x, degree - 3, knots - knotsbT9r)4 -8,782e-04 1,261e-03 -0,697 0,48670

bs(x, degree - 3, knots = knotsbT9r)5 1,803e-02 1,396e-03 12,918 < 2e-16 ***

bs(x, degree = 3, knots = knotsbT9r)6 2,275e-02 1,488e-03 15,296 < 2e-16

bs(x, degree = 3, knots = knotsbT9r)7 -6,848e-04 1,580e-03 -0,434 0,66501

bs(x, degree = 3, knots = knotsbT9r)8 4,871e-03 1,469e-03 3,316 0,00107 **

Signif. codes: 0 ‘***’ 0,001 ‘**’ 0,01 ‘*’ 0,05 ‘.’ 0,1 ‘ ’ 1

Residual Standard error: 0,002153 on 226 degrees of freedom

Multiple R-squared: 0,914, Adjusted R-squared: 0,9109

F-statistic: 300,1 on 8 and 226 DF, p-value: < 2,2e-16
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Fig. 8: Dissociation rate of sample mass depending on the surface temperature of the sample during sample heating.

Fig. 9: Comparison of the fitted values of sample mass for the chosen models containing terms bs and ns with the given number of degrees of
freedom df.

The statistical significance examination of the β̂ estima-
tors of the bs(…,df=10,…) model terms and the new vari-
ables is shown in Table 6. The nine model terms written
using cubic basis B -splines are also shown in Table 6. The
result of their statistical significance test is also shown.
The domain of the independent variable was divided in-
to 7 knot spans using 6 internal knots as shown in Fig. 9.
Table 6 also shows the p-value, which indicates the statis-
tical significance of the new model variables.

A regression matrix of dimension 235×10 is generated
with the commands:

> model.splinesbM10<-bs(xS,df=10,inter-

cept=TRUE)

> print(model.splinesbM10)

235 is the number of measurements performed. The
number of columns is the model basis functions num-
ber. The example of these basis functions values for mea-
surement, e.g. I = 127, is shown in Table 7. This example is
called with the command:

> print(model.splinesbM10 127,)
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Table 6: Statistical significance test results of the β̂ estimators of bs(…,df=10,…) model of sample mass vs. sample heating
time relationship and of the new variables.

Call:
1m(formula = yM ∼ bs(x, df = 10, knots = knotsbM10))

Residuals:

Min 1Q Median 3Q Max

-0,81369 -0,09386 -0,00649 0,09611 0,69502

Coefficients:

Estimate Std. Error t value pr(> t)

(Intercept) 264,87264 0,11705 2262,807 < 2e-16 ***

bs(x, df = 10, knots = knotsbM10)1 0,17576 0,21800 0,806 0,420961

bs(x, df = 10, knots = knotsbM10)2 -0,06728 0,14174 -0,475 0,635476

bs(x, df = 10, knots = knotsbM10)3 -0,55340 0,16529 -3,348 0,000954
***

bs(x, df = 10, knots = knotsbM10)4 0,24589 0,14090 1,745 0,082331.

bs(x, df = 10, knots = knotsbM10)5 -4,19399 0,15212 -27,570 < 2e-16 ***

bs(x, df = 10, knots = knotsbM10)6 -44,03747 0,15009 -293,406 < 2e-16 ***

bs(x, df = 10, knots = knotsbM10)7 -107,68368 0,17220 -625,332 < 2e-16

bs(x, df = 10, knots = knotsbM10)8 -114,65053 0,17513 -654,674 < 2e-16

bs(x, df = 10, knots = knotsbM10)9 -114,73249 0,16591 -691,522 < 2e-16

Signif. codes: 0 ‘***’ 0,001 ‘**’ 0,01 ‘*’ 0,05 ‘.’ 0,1 ‘ ’ 1

Residual Standard error: 0,226 on 225 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 8,805e-05 on 9 and 225 DF, p-value: < 2,2e-16

The measurement I = 127 performed at s127 = 11248.57 s
of the sample calcination time is marked in Fig. 9. The se-
lected value of the explanatory variable is in the knot span
[n3,n4) as is shown in Fig. 9. An example of the model re-
sponse value calculation, i.e. the predicted sample weight
ŷ127, to the measured value y127 for the explanatory vari-
able s127 using the values of the basis functions stored in
Table 7 is shown below. For finding non-zero basis func-
tions in the selected knot span that will be used to calculate
the predicted sample mass, rule (40) is applied:

On any knot span [nj,nj+1) at most d+1 degree d basis
functions are non-zero, namely:

B x B x B x B x B xj d d j d d j d d j d j d               , , , , ,, , , , ,1 2 1
(14)

which, in the considered knot span for j = 3 and d = 3, gives
the following functions:

B x B x B x B x0 3 1 3 2 3 3 3, , , ,, , ,        (15)

(b) Analytic expression of the B – spline basis functions

The analytic expression of the function 15 can be deter-
mined with the triangle method shown in Fig. 10. The
symbol for the knot span, i.e. [n3,n4) in which the non-
zero basis functions are sought, is the vertex of the isosce-

les triangle    1 3 4 2 ,  , whose sides are drawn with a
dashed line and they are shown in Fig. 10. The sought non-

zero basis functions of degree d = 3 are located at the base

a1a2 of the triangle    1 3 4 2 ,  , and they are indicated
by arrows in Fig. 10. These functions are applied in a lin-
ear model of the sample mass predicted value ŷ at a selected
moment belonging to the knot span [n3, n4).

Fig. 10: Scheme for finding non-zero basis functions of degree d =
3 in the knot span [n3, n4).
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As an example, the formula of the cubic basis function
B0,3 derived using the recursive formula 11 is written be-
low and its value is calculated for the measurement I = 127,
which belongs to the knot span [n3, n4). The form of the
function is:

B x
xi

0 3
4

3

4 1 4 2 4 3
,   

 
     


      (16)

The result of the calculation performed in R for measure-
ment I = 127 after using the command:

> x [127]
is the value: x127 = x[127] = 0.5384615.
Furthermore, the regression matrix containing the values

of the basis functions generated by the R calculation envi-
ronment for the model bs(x, df = 10, intercept = T) contains
the following values of the knots used in the formula [16]:
  
 

1 2 3

4 5

0 1428571 0 2857143 0 4285714
0 5714286 0 7

  
 

. , . , . ,
. , . 1142857 0 85714296, . .  .

After the insertion of the above values into the
formula [16] of the cubic basis function, its value
B0,3 = 0.002048252 = bs3 is obtained. For rounding ac-
curacy, it is the value of this function for measurement
I = 127 shown in Table 7. The above basis function in the
model shown in Table 6 is written as the function bs(x, df =
10, knots = knotsbM10)3, and its shorter version written is

bs3. Thus, the values of the other basis functions indicated
in Fig. 10. and shown in Table 7 are as follows:

B1,3 = 0.302533758 = bs4, B2,3 = 0.619556972 = bs5,
B3,3 = 0.075861023 = bs6.

It is worth noting that the sum of the computed values
of the basis functions is 1. The plots of these functions in
domain xi ∈ [0, 1] are shown in Fig. 11.

Knowing the values of the basis functions for the variable
x127 located in the knot span [n3,n4) at time s=11248.57 s of
the measurement, the predicted value of the sample mass is
calculated using the bM10 model. The general form of this
model given in Table 6 is as follows:

ˆ . . .

. .

yi bs bs

bs

     

  

264 87264 0 17576 1 0 06728 2

0 55340 3 0 24589 bbs bs
bs bs
bs

4 4 19399 5
44 03747 6 107 68368 7
114 65053 8

  
   
 

.
. .
. 1114 73249 9. bs

(17)

which in the considered calculation case for the knot span
[n3,n4) is simplified to the form:

ˆ . . .
. .

yi bs bs
bs

     
 

264 87264 0 55340 3 0 24589 4
4 19399 5 44 03747bs6

(18)

as only these basis functions are non-zero in the knot span
[n3,n4), as shown in Fig. 11.

Table 7: Row i = 127 of the degree 3 basis functions matrix of the bM10r model.

1 2 3 4 5

0,000000000 0,000000000 0,000000000 0,002047923 0,302527103

6 7 8 3 10

0,619560448 0,075864526 0,000000000 0,000000000 0,000000000

Fig. 11: Non-zero cubic basis functions bs3, bs4, bs5, bs6 in knot span [n3,n4).
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By inserting the values bs3, bs4, bs5, bs6 contained in the
model basis function matrix into Equation [18], the pre-
dicted value of the sample mass at the moment correspond-
ing to measurement I = 127 is calculated to be ŷ127 = 258.86 g.
The measured sample mass was y127 = 259.56 g. Hence the
residual is y127-ŷ127 = 0.70 g.

The other basis functions have the form shown in Equa-
tions [17 – 19]:

B x

x x

x x
i

i i

i
1 3

1 4
2

4 1 4 2 4 3

2 4
,    
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(19)
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The sample heating time is a continuous variable. There-
fore, the analytical form of the predicted calcined sam-
ple mass ŷ can be derived from the equations [16, 19 – 21].
Then the sample (grain, limestone lump) dissociation rate
as a function of heating time for a given furnace chamber
heating curve is the derivative of dŷ/dx.

The properties of lime depend, among other things, on
the calcination time and the calcination temperature. Boy-
ton 11 discusses, e.g. a significant effect of calcination time
and temperature of limestone on the size of the specific
surface area of the produced lime. He cites the results of
a study in the value of the specific surface area changes of
lime produced from limestone containing 98.5 % CaCO3
calcined, e.g., at a temperature of about 1 093 °C over a pe-
riod of 16 hours. The specific surface area of the lime de-
creased from a value of 1.8 to a value of 0.4 m2⋅g-1 during
calcination. In turn, Oates 12 cites the results of a study of
lime density as a function of temperature and calcination
time. He shows an increase in lime density depending on
the calcination time for each temperature used in the tests.
For example, the density of lime produced from limestone
with a high CaCO3 content after about 3 hours of calci-
nation at 1 100 °C equalled about 1.76 g⋅cm-3, and after 27
hours of calcination at the same temperature the density of
the produced lime increased to the value of 2.03 g⋅cm-3.

(c) Use of B – splines for description of the relationship be-
tween thermal dissociation rate vs heating time and surface
temperature of calcinated sample

A scatterplot of the sample thermal dissociation rate vs.
heating time and surface temperature measurement re-
sults, using the measurement results shown in Fig. 3. and

Fig. 4., is shown in Fig. 12. Therefore, in studies of calcina-
tion of limestone samples, it is useful to use the R program,
which allows the construction of plots of the studied prop-
erty limestone sample vs., e.g., two or more variables. As
already mentioned, these measurements were conducted
using the furnace heating curve shown in Fig. 2. The heated
mixture of air and carbon dioxide with cCO2 = 45.16 %vol.
was flowed into the furnace heating chamber.

Fig. 12: Scatterplot of the calculated thermal dissociation rate of the
limestone sample (Dissociation rate ṙ g⋅s-1) as a function of the
sample thermal dissociation time (Time s, s) vs. the sample surface
temperature (Temperature T, K): heating curve according to Fig. 2,
gas mixture with concentration CCO2 = 45.16 %vol.

The diagram shown in Fig. 12 is constructed after loading
the Diss package containing the results of own calculations
and the rgl package from the set of packages contained in
the R program by calling the function:
> plot3d(x=Diss$Temperature,y=Diss$Time,
z=Diss$Rate,
xlab=“”,ylab=“”,zlab=“”,cex.axis=2)

The shape of thefurnace heating curve depends on the
selection of the heating rate of the furnace heating chamber
within the assumed heating intervals. The heat transfer
conditions in the heating chamber and the rate of thermal
dissociation of the limestone sample also depend on the
CO2 concentration in the gas mixture entering the heating
chamber. Therefore, based on determination of the ranges
of these quantities, a scatterplot of the dissociation rate
measured results of the calcined limestone sample can be

drawn for the function �r f T cCO  , ,
2

.

V. Conclusions
1. The temperature of the calcined surface of a large lime-

stone sample (grains, limestone lump) and the degree
of its conversion to lime are among the most important
functions used in modelling of the thermal dissociation
of charge for the production of lime.
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2. A description of measurement results for the surface
temperature and calcined mass of a large sample of
limestone (grains, limestone lump) as a function of cal-
cination time can be obtained using the cubic base B
- splines contained in splines package of the R com-
putational environment for statistical calculations and
modelling.

3. A linear model of the temperature of the surface of a
calcined sample prepared for given conditions of tem-
perature, calcination time, and CO2 concentration in
the sample environment can be used to model the ther-
mal dissociation of a limestone charge in the shaft of a
selected lime kiln. Similarly a linear model of the pre-
dicted sample mass and analytical forms of functions
from the B - spline basis in combination with their val-
ues contained in the regression matrix generated by the
R program for a selected knot span of the function do-
main may be used for modelling of sample thermal de-
composition.

4. The regression splines may be used for an analytical de-
scription of results obtained in thermal analysis meth-
ods, which are used to study changes of the properties
of a substance occurring during its heating or cooling
under different measurement conditions.

NOMENCLATURE

B = B-spline basis function

K = number of knots

M = degree of transformation of predictor

N = number of measurements

T = temperature

X = predictor

Y = response variable

d = degree of B – spline basis function

df = degree of freedom

ṙ = rate of thermal dissociation

x = measurement result of predictor

y = measurement result of response variable

z = charge layer thickness coordinate

ŷ = estimated value of response variable

a = coefficient

b = parameter of predictor

β̂ = estimator of parameter

e = random error

n = knot

r2 = variance of error term

s = time

ϑ = coefficient

SUBSCRIPTS

h = heating time

i =measurement number

j =knot number

t =predictor number
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