Three-Dimensional Network ZnO/BaFe$_{12}$O$_{19}$ Composite Thick Films and their Microwave Absorption Properties

Y. Lin, J. Dong, Y. Liu, N. Han, L. Wang, H. Yang*, J. Wang
School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an, 710021, China

Received December 12, 2017; received in revised form February 2, 2018; accepted March 4, 2018

Abstract

ZnO/BaFe$_{12}$O$_{19}$ composite thick films with four different ZnO/BaFe$_{12}$O$_{19}$ mass fractions were synthesized with the tape-casting method in the presence of plate-like BaFe$_{12}$O$_{19}$ grains and sphere-like ZnO grains. Their phase composition, morphology and magnetic properties were analyzed by means of XRD, SEM and VSM, respectively. The microwave absorption properties were also investigated in the frequency range of 2–18 GHz, and the results show that the ZnO/BaFe$_{12}$O$_{19}$ composite thick films have multiple microwave attenuation peaks and their microwave absorption properties can be easily tuned by varying the mass ratio of BaFe$_{12}$O$_{19}$/ZnO. When the mass ratio of BaFe$_{12}$O$_{19}$ to ZnO is 15:85, the composite thick film exhibits a minimum RL of -48.6 dB at 17.2 GHz with a thickness of 4.5 mm. The electromagnetic performance of the ZnO/BaFe$_{12}$O$_{19}$ composite thick films could be attributed to the effective complementarities between the dielectric loss and the magnetic loss.

Keywords: Tape casting, impedance matching, microwave absorption

I. Introduction

Microwave-absorbing materials have attracted growing attention because of their important applications in protecting the environment from the radiation of telecommunication equipment, and in some specific aircraft, communication devices, etc.1–6 ZnO is considered to be a promising microwave-absorbing material in civilian and military applications because of its light weight, low cost, simple synthesis, and strong absorption ability7–11. However, pure dielectric materials with high dielectric constants are harmful for impedance matching, which lead to strong reflection and weak absorption. Therefore, researchers are urged to find new types of electromagnetic-absorbing materials to deal with electromagnetic radiation.

The introduction of magnetic materials to form ZnO-based composites is a good solution to make up for the deficiency of ZnO. Recently, an increasing number of reports have focused on synthesizing ZnO-based composites because of their unique properties with possible technological applications in the microwave absorption field12,13; these include, for example, SrFe$_{12}$O$_{19}$/ZnO14, ZnO/CoFe$_{2}$O$_{4}$/ZnO15 and ZnAl$_{2}$O$_{4}$/ZnO16. To the best of our knowledge, there are few reports on combining ZnO and BaFe$_{12}$O$_{19}$ to form composites. M-type Ba-hexaferrite (BaFe$_{12}$O$_{19}$) is a promising microwave-absorbing material owing to its axis-anisotropy behavior and magnetization value at the microwave frequencies17–19. Furthermore, its magnetic and dielectric properties could be modulated to satisfy different applications.

So far, various methods have been reported for synthesizing ZnO-based composites, such as the in-situ hydrosolysis method14, sol-gel process15,16 and hydrothermal method20. However, the above methods have many disadvantages such as expensive instruments, harsh reaction conditions, toxic reagents and long reaction time. Therefore, it is necessary to explore a simple, fast and low-cost method for the synthesis of ZnO-based composites. The tape-casting method has been demonstrated to be one of the more simple and feasible methods14–16,20. The tape-casting method can also be easily adapted to prepare multi-layer composites. In this paper, ZnO/BaFe$_{12}$O$_{19}$ composite thick films with different mass ratios of BaFe$_{12}$O$_{19}$/ZnO were prepared with the tape-casting method21–24. The phase composition, morphology and microwave absorption properties of ZnO/BaFe$_{12}$O$_{19}$ composite thick films were also investigated in detail.

II. Experimental

(1) Materials

Barium carbonate (BaCO$_{3}$), iron sesquioxide (Fe$_{2}$O$_{3}$), sodium chloride (NaCl), barium chloride dihydrate (BaCl$_{2}$·2H$_{2}$O), zinc nitrate hexahydrate (Zn(NO$_{3}$)$_{2}$·6H$_{2}$O) and sodium carbonate (Na$_{2}$CO$_{3}$), glycerol trioleate, polyvinyl butyral (PVB), dibutyl phthalate and anhydrous ethanol were purchased from Sinopharm Chemical Reagent Co., Ltd. All the chemical reagents used in this study were of analytical pure grade and used without further purification.

(2) Synthesis of ZnO/BaFe$_{12}$O$_{19}$ composite thick films

The plate-like BaFe$_{12}$O$_{19}$ powders were synthesized with a two-step molten salt method (MSM). Firstly, Ba-
CO$_3$ and Fe$_2$O$_3$ were mixed according to the stoichiometric ratio of BaFe$_{12}$O$_{19}$. The mixed powders were calcined at 1000 °C for 2 h together with NaCl at the weight ratio of 1:2. The molten salt was washed with hot deionized water. Secondly, to coarsen the plate-like BaFe$_{12}$O$_{19}$ powders obtained from the MSM, the obtained powders were mixed with BaCl$_2$·2H$_2$O and Fe$_2$O$_3$. The mass ratio of BaCl$_2$·2H$_2$O and Fe$_2$O$_3$ was 2:1 and the mass ratio of Fe$_2$O$_3$ and BaFe$_{12}$O$_{19}$ ratio was 500:1. The mixtures were calcined at 1150 °C for 8 h to synthesize plate-like BaFe$_{12}$O$_{19}$ powders.

Sphere-like ZnO powders were synthesized with the sol-gel method. In a typical preparation procedure, 5 g Zn(NO$_3$)$_2$·6H$_2$O and 3 g NaCO$_3$ were dissolved in 30 mL deionized water, respectively. The NaCO$_3$ solution was slowly added to Zn(NO$_3$)$_2$·6H$_2$O solution and then the viscous gels were formed. The resulting product was collected by means of centrifugation, washed repeatedly with ethanol, and dried in vacuum at 80 °C for 8 h. Finally, the product was calcined in air at 500 °C for 2 h.

Composite thick films of (1-x)ZnO/xBaFe$_{12}$O$_{19}$ (x = 5 wt%, 15 wt%, 25 wt%, 35 wt%) were prepared with the tape-casting method. To prepare the homogeneous slurry, the ZnO powders and BaFe$_{12}$O$_{19}$ powders were mixed according to different mass ratios, together with the solvent (alcohol, 60 wt% of the powders, and butanone, 90 wt% of the powders), dispersant (glycercor trioleate, 2 wt% of the powders), binder (PVB, 5 wt% of the powders) and plasticizer (dibutyl phthalate, 3 wt% of the powders). Then the tape casting was carried out with the doctor blade height of 20 µm and at a speed of 30 cm/min. The resulting ZnO/BaFe$_{12}$O$_{19}$ composite thick films were dried at 100 °C for 10 h.

III. Results and Discussion

The X-ray diffraction (XRD) pattern of the BaFe$_{12}$O$_{19}$ powders synthesized by means of MSS at 1150 °C for 4 h is provided in Fig. 1(a). This pattern shows the formation of a single phase without any traces of unwanted or parasite phases. The diffraction peaks are indexed to JCPDS card no. 43 – 0002. Most of the peaks of (00h), such as (006), (008) and (0014) are found to have higher intensities than other peaks, indicating the surface of BaFe$_{12}$O$_{19}$ grains is parallel to the (00h) planes. This suggests that the BaFe$_{12}$O$_{19}$ grains have a high degree of grain orientation, and the corresponding SEM image (inset of Fig. 1(a)) shows that these grains have a plate-like morphology. The growth along the a(b) axis is more pronounced than that along the c-axis, owing to the diffraction peaks of (006), (008) and (0014) planes in the XRD patterns. In Fig. 1(b), the diffraction peaks at 31.8°, 34.6°, and 36.4° originate from ZnO (JCPDS card no. 36 – 1451). No diffraction peaks of other impurities are detected, which indicates a high purity and crystallinity of these ZnO samples. The SEM image (inset of Fig. 1(b)) shows that the synthesized ZnO nanomaterials are globular and of uniform size.

![Fig. 1: XRD pattern of the BaFe$_{12}$O$_{19}$ and ZnO powders.](image-url)

The μ$, \mu''$, ε$, \varepsilon''$ values of the samples were calculated with dedicated software.
The SEM micrographs of the ZnO/BaFe$_{12}$O$_{19}$ composite thick films with different mass fraction of BaFe$_{12}$O$_{19}$ are presented in Fig. 2. It can be seen that the diameters of ZnO grains in the four thick films coincide well with each other, and are about 50 – 100 nm, and the thickness and the diameter of BaFe$_{12}$O$_{19}$ grains are about 50 – 70 nm and 10 – 20 µm, respectively. Noticeably, BaFe$_{12}$O$_{19}$ grains exhibit the high degree of orientation in the films. In order to illustrate the internal structure of ZnO/BaFe$_{12}$O$_{19}$ composite thick films, the microstructure and structures of the representative 65 %ZnO/35 %BaFe$_{12}$O$_{19}$ composite thick film were investigated with a high-resolution scanning electron microscope (HRSEM), as shown in Fig. 3. From Fig. 3(a) and Fig. 3(b), it can be found that in the 65 %ZnO/35 %BaFe$_{12}$O$_{19}$ composite thick film, BaFe$_{12}$O$_{19}$ grains are evenly distributed between ZnO grains. From the energy-dispersive spectrometer (EDS) mapping image, it can be easily seen that the O, Zn, Fe and Ba are uniformly distributed, implying that the plate-like BaFe$_{12}$O$_{19}$ and ZnO spheres are well dispersed in the composites.

![Fig. 2: SEM micrographs of the (1-x)ZnO/xBaFe$_{12}$O$_{19}$ composite thick films after tape casting: (a) x = 5 wt%, (b) x = 15 wt%, (c) x = 25 wt%, (d) x = 35 wt%.](image1)

![Fig. 3: SEM images of the 65 %ZnO/35 %BaFe$_{12}$O$_{19}$ composite thick film at different magnifications (a, b), elemental maps of O (c), Zn (d), Fe (e) and Ba (g) in ZnO/BaFe$_{12}$O$_{19}$ composite thick films, respectively.](image2)
To verify the magnetic properties of the samples, the hysteresis loop of each sample was measured using VSM, as shown in Fig. 4. It is shown that all the films exhibit a soft magnetic behavior. The saturation magnetization (M_s) of (1-x)ZnO/xBaFe$_{12}$O$_{19}$ composite thick films with the values of 6.4, 10.1, 15.5 and 20.7 emu/g have been obtained corresponding to the BaFe$_{12}$O$_{19}$ fractions of x = 5, 15, 25 and 35 wt%, respectively. According to Rikukawa 27, for either domain wall movement or spin rotation, the initial permeability is proportional to M_s^2. As explained above, with increasing BaFe$_{12}$O$_{19}$ fraction, M_s increases.

![Fig. 4: Magnetization curves of BaFe$_{12}$O$_{19}$/ZnO composite thick films with mass fraction of BaFe$_{12}$O$_{19}$.](Image)

The electromagnetic parameters (relative complex permittivity, ε, and relative complex permeability, $\mu = \mu' - j\mu''$) were measured to investigate the microwave absorption properties of the (1-x)ZnO/xBaFe$_{12}$O$_{19}$ composite thick films, as shown in Fig. 5. The real permittivity (ε') and real permeability (μ') symbolize the storage ability of electric and magnetic energy, while the imaginary permittivity (ε'') and imaginary permeability (μ'') are related to the dissipation of electric and magnetic energy 28, 29.

As shown in Fig. 5(a), both ε' and ε'' show first an increase but then decrease with the increase of the BaFe$_{12}$O$_{19}$ fraction in the range of 2–18 GHz. The ε' and ε'' of 75 wt%ZnO/25 wt%BaFe$_{12}$O$_{19}$ composite thick film are the highest, in the range of 15.3–17.2 GHz and 12.6–14.5 GHz, respectively. However, too high permittivity is harmful to the impedance match and results in strong reflection and weak absorption 30, 31. In addition, the fluctuation of the ε' and ε'' in the range of 2–18 GHz is ascribed to displacement current lag at the heterogeneous interface. The displacement current lag is caused by the polarization process at the interfaces between ZnO and BaFe$_{12}$O$_{19}$ and associated relaxation process 32, 33. The μ' and μ'' are plotted in Fig. 5(b) in the range of 2–18 GHz. As shown in Fig. 5(b), μ' decreases from 2.5 to 0.8 and exhibits broad multi-resonance peaks at 2–18 GHz, implying that natural resonance occurs in the ZnO/BaFe$_{12}$O$_{19}$ composite thick films. In addition, it can be speculated that the multi-resonance peaks, are the consequence of the multi-layer interface effect, the surface effect, and spin-wave excitations, defined as "exchange mode" resonance 34–36. Fig. 5(c) illustrates the dielectric loss of the ZnO/BaFe$_{12}$O$_{19}$ composite thick films in the range of 2–18 GHz. It is observed that the dielectric loss first increases and then decreases with the increase of the BaFe$_{12}$O$_{19}$ fraction, and the dielectric loss of 75% ZnO/25% BaFe$_{12}$O$_{19}$ composite thick film is the highest.

The Cole-Cole plot of the ZnO/BaFe$_{12}$O$_{19}$ composite thick films, as shown in Fig. 5. The real permittivity (ε') and imaginary permittivity (ε'') are related to the dissipation of electric energy to the thermal energy 40. Therefore, the microwave energy is attenuated. The Cole-Cole semicircles are distorted, indicating that except for the Debye relaxation, other mechanisms, such as Maxwell-Wagner relaxation and electron polarization, could also exist in the network ZnO/BaFe$_{12}$O$_{19}$ composite thick films. In the network structured composites, the additional interfaces can induce interfacial polarizations 41, 42. In addition, the numerous ZnO and BaFe$_{12}$O$_{19}$ particles are responsible for interfacial polarization, which further contributes to the dielectric loss. Interfacial polarization occurs in the heterogeneous media due to accumulation of charges at the interfaces.
It is well known that the magnetic loss is related to domain wall resonance, the eddy current effect and the natural resonance of the composite thick films. The contribution of domain wall resonance is negligible since it occurs usually in the low frequency range of 1–100 MHz, which is far lower than the measurement frequencies. The eddy current loss is related to the diameter of the particles and electric conductivity, which can be expressed by the following equation:

$$\mu'' = 2\pi\mu_0 (\mu'')^2 \sigma d^2 f/3$$

where μ_0 is the permeability of vacuum. As a deformation formula:

$$\mu'' (\mu'')^2 f^{-1} = 2\pi\mu_0 \sigma d^2 f/3 = C_0$$

If the magnetic loss results from eddy current loss, the value of C_0 is a constant when the frequency is varied.

Fig. 7 shows the eddy-current loss curves of the ZnO/BaFe$_{12}$O$_{19}$ composite thick films with different mass fractions of BaFe$_{12}$O$_{19}$, the C_0 values change drastically as a function of frequency in the range of 2.0–7.0 GHz. However, it can be seen that the composite thick films have a constant $\mu'' (\mu'')^2 f^{-1}$ value from 7.0 to 18.0 GHz, indicating that the eddy-current loss range of the samples is wider in relatively high frequency regions. Besides, the magnetic loss in the ZnO/BaFe$_{12}$O$_{19}$ composite thick films is mainly caused by the natural resonance in the frequency range of 2.0–7.0 GHz. For the ZnO/BaFe$_{12}$O$_{19}$ composite thick films, the natural resonance can be attributed to...
the small size effect of ZnO. According to the natural-resonance equation 49,

\[2\pi f_r = rH_s \]
\[H_s = \frac{4|K_1|}{3\mu_0M_s} \]

where \(r \) is the gyromagnetic ratio, \(H_s \) is the anisotropy energy, and \(|K_1|\) is the anisotropy coefficient. Generally, the undoped barium hexaferrite has a natural resonance frequency at about 48 GHz due to its strong uniaxial anisotropy along the c-axis 50. According to Eq. (8), the anisotropy energy increases with the decrease of saturation magnetization. The \(M_s \) value of the ZnO/BaFe\(_{12}\)O\(_{19}\) composite thick films increases with the increase of the BaFe\(_{12}\)O\(_{19}\) mass fraction (Fig. 4). Hence, the \(H_s \) of the 65\%ZnO/35\%BaFe\(_{12}\)O\(_{19}\) composite thick film is higher. The higher \(H_s \) is helpful to the improvement of microwave absorption properties 51.

In order to avoid the reflection of electromagnetic wave on the surface, the characteristic impedance should be as close as possible to the free space. \(Z_{im} \) can be calculated according to the complex permittivity and complex permeability, and the formula is as follows 52.

\[Z_{im} = \sqrt{\frac{\mu_r}{\varepsilon_r} \tanh \left(\frac{2\pi fd}{c} \sqrt{\frac{\mu_r}{\varepsilon_r}} \right) } \]
\[RL(dB) = 20\log \left| \frac{Z_{im} - 1}{Z_{im} + 1} \right| \]

where \(f \) is the microwave frequency, \(d \) is the thickness of the absorber, \(c \) is the velocity of light and \(Z_{im} \) is the input impedance of the absorber. The impedance matching condition is determined by the combinations of six parameters (namely, \(\varepsilon_r, \mu_r, \mu'_r, f \) and \(d \)). The reflection loss curve versus frequency can be calculated from \(\varepsilon_r \) and \(\mu_r \) at an as-designed layer thickness.

![Fig. 7: Frequency dependency of the eddy-current loss curves of ZnO/BaFe\(_{12}\)O\(_{19}\) composite thick films with different mass fraction of BaFe\(_{12}\)O\(_{19}\).](image)

![Fig. 8: The impedance of the composites versus frequency of ZnO/BaFe\(_{12}\)O\(_{19}\) composite thick films with different mass fraction of BaFe\(_{12}\)O\(_{19}\).](image)

![Fig. 9: The calculated three-dimensional presentations of theoretical RL of the ZnO/BaFe\(_{12}\)O\(_{19}\) composite thick films with different thicknesses in the range of 2 – 18 GHz. The microwave absorption properties of the ZnO/BaFe\(_{12}\)O\(_{19}\) composite thick films and some recently reported ZnO-based composites are shown in Table 1. As shown in Fig. 9(a), the minimum RL reaches -32.4 dB at 12.6 GHz for the 95 wt\%ZnO/5 wt\%BaFe\(_{12}\)O\(_{19}\) composite thick film with a thickness of 6 mm, and the bandwidth of RL less than -10 dB can reach up to 5.9 GHz. For 85 wt\%ZnO/15 wt\%BaFe\(_{12}\)O\(_{19}\) composite thick film (Fig. 9(b)), the minimum RL reaches -48.6 dB at 17.2 GHz with a thickness of 4.5 mm, whereas for 75 wt\%ZnO/25 wt\%BaFe\(_{12}\)O\(_{19}\) composite thick film (Fig. 9(c)), the minimum RL reaches -36.0 dB at 15.3 GHz with a thickness of 5 mm. For 65 wt\%ZnO/35 wt\%BaFe\(_{12}\)O\(_{19}\) composite thick film (Fig. 9(d)), the minimum RL reaches -36.6 dB at 12.6 GHz with a thickness of 6 mm. From the above data, it can be concluded that the ZnO/BaFe\(_{12}\)O\(_{19}\) composite thick films have microwave absorption with multiple frequency bands at a certain thickness. The peak at high frequency is related to the natural resonance, and the absorption peak at low frequencies is attributed to the domain wall motion 43. And we can infer that the microwave absorption properties of the ZnO/BaFe\(_{12}\)O\(_{19}\) composite thick films can be adjusted based on the thickness and the BaFe\(_{12}\)O\(_{19}\) mass fraction.](image)
Table 1: The microwave absorption properties of ZnO/BaFe$_{12}$O$_{19}$ composite thick films and some recently reported composites.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Minimum RL value (dB)</th>
<th>Optimum thickness (mm)</th>
<th>Optimum frequency (GHz)</th>
<th>Frequency range (RL<-10dB)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubular ZnO/CoFe$_2$O$_4$ nanocomposites</td>
<td>-28.2 dB</td>
<td>1.5 mm</td>
<td>8.6 GHz</td>
<td>9 GHz</td>
<td>13</td>
</tr>
<tr>
<td>BaFe${12}$O${19}$/ZnO composite</td>
<td>-37.5 dB</td>
<td>6.8 mm</td>
<td>4 GHz</td>
<td>4.3 GHz</td>
<td>2</td>
</tr>
<tr>
<td>ZnO-Based materials modified with ZnAl$_2$O$_4$</td>
<td>-25 dB</td>
<td>2.8 mm</td>
<td>10.5 GHz</td>
<td>4.5 GHz</td>
<td>14</td>
</tr>
<tr>
<td>Cage-like ZnO/SiO$_2$ nanocomposites</td>
<td>-10.6 dB</td>
<td>3.0 mm</td>
<td>12.8 GHz</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>95 wt%ZnO/5 wt%BaFe${12}$O${19}$</td>
<td>-32.4 dB</td>
<td>6.0 mm</td>
<td>12.6 GHz</td>
<td>5.9 GHz</td>
<td>this work</td>
</tr>
<tr>
<td>85 wt%ZnO/15 wt%BaFe${12}$O${19}$</td>
<td>-48.6 dB</td>
<td>4.5 mm</td>
<td>17.2 GHz</td>
<td>2.3 GHz</td>
<td>this work</td>
</tr>
<tr>
<td>75 wt%ZnO/25 wt%BaFe${12}$O${19}$</td>
<td>-36.0 dB</td>
<td>5.0 mm</td>
<td>15.3 GHz</td>
<td>3.8 GHz</td>
<td>this work</td>
</tr>
<tr>
<td>65 wt%ZnO/35 wt%BaFe${12}$O${19}$</td>
<td>-36.6 dB</td>
<td>6.0 mm</td>
<td>12.6 GHz</td>
<td>2.2 GHz</td>
<td>this work</td>
</tr>
</tbody>
</table>

The microwave absorption performances of the ZnO/BaFe$_{12}$O$_{19}$ composite thick films are mainly attributed to two key factors: electromagnetic wave attenuation and impedance matching. To give a visual demonstration of the microwave absorption mechanism, a schematic diagram is presented in Fig. 10. The three-dimensional network will be formed when the plate-like BaFe$_{12}$O$_{19}$ grains are distributed among the sphere-like ZnO grains. As electromagnetic waves impenetrate the thick film, the energy is induced into dissipative current by the networks, which can be explained by the following facts. Firstly, the multi-interfaces and triple junctions (ZnO@BaFe$_{12}$O$_{19}$, ZnO@ZnO, BaFe$_{12}$O$_{19}$@BaFe$_{12}$O$_{19}$) are advantageous for electromagnetic attenuation owing to the existing interfacial polarizations. The electromagnetic waves radiating on absorbents are partially absorbed, while the surplus electromagnetic waves will present diffuse reflections owing to the multiple interfaces. During the process of diffuse reflections, the electromagnetic waves enter another process, in which the energy is induced into dissipative current. Secondly, the BaFe$_{12}$O$_{19}$ grains and the void space existing between ZnO and BaFe$_{12}$O$_{19}$ grains result in relatively large specific surface areas, providing more active sites for reflection and scattering of electromagnetic waves. Finally, the void space between ZnO and BaFe$_{12}$O$_{19}$ grains can effectively interrupt the spread of electromagnetic waves and generate dissipation owing to the existing impedance difference and enhance the
microwave absorption properties. The results could provide guidance for exploring and designing advanced microwave absorption materials based on adjustment of the BaFe$_{12}$O$_{19}$ mass fraction and the thickness of the composite thick films.

IV. Conclusions

In conclusion, ZnO/BaFe$_{12}$O$_{19}$ composite thick films have been successfully synthesized with the tape-casting process with the presence of synthesized plate-like BaFe$_{12}$O$_{19}$ grains and ZnO sphere-like grains, in which interweaves with ZnO spheres and a three-dimensional microwave absorption material based on adjustment of the mass ratio of BaFe$_{12}$O$_{19}$. When the mass ratio of BaFe$_{12}$O$_{19}$ is 15, the composite thick film exhibits a minimum RL of -48.6 dB at 17.2 GHz with a thickness of 4.5 mm. Such composite thick films could be developed for a wide spectrum of applications in the area of microwave absorption.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No.51772177), the Chinese Postdoctoral Science Foundation (Grant No.2016MS90916), the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, the Science and Technology Foundation of Weiyang District of Xi’an City (Grant No. 201605), the Industrialization Foundation of Education Department of Shaanxi Provincial Government (Grant No. 16JF002).

References

