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Abstract
To illustrate the effect of Cu-doping in Ruddlesden-Popper-type La2NiO4+d oxides, the crystal structure, intersti-

tial oxygen formation, electrical conductivity, catalytic activity and chromium tolerance of La2NiO4+d(LNO)and
La2Ni0.9Cu0.1O4+d(LNCO) are analyzed. XRD Rietveld and HT-TEM results confirm that both can be identified as
Ruddlesden-Popper-type structures with tetragonal symmetry. Compared with non-doped LNO, LNCO has less in-
terstitial oxygen, and its electrical conductivity decreases owing to the reduction of the carrier concentration. The
effects on electrode performance are analyzed using symmetric cells, and interface polarization resistance at 800 °C
is reduced from 2.20 Xcm2 to 0.54 Xcm2 after Cu-doping. Experimental results together with the excellent chromi-
um tolerance confirmed by HT-XRD results demonstrate that Cu-doped LNO can work as a promising chromium-
tolerant cathode.
Keywords: Ruddlesden-Popper-type oxide, interstitial oxygen, interface polarization resistance, chromium-tolerant cathode

I. Introduction
Ruddlesden-Popper (RP) oxides, An+1BnO3n+1, con-
sisting of alternate n-perovskite (ABO3)-layers and AO
rock salt layers along the c-axis, can exhibit large oxy-
gen non-stoichiometry, intrinsic mixed ionic-electron-
ic conductivity, and excellent catalytic activity as typi-
cal high-performance cathode materials 1 – 5. One-per-
ovskite-layer oxide, La2NiO4+d (LNO), has large in-
terstitial oxygen, providing excellent oxygen diffusivity
with low activation energy 5, 6. Compared to Co-contain-
ing cathode materials such as Ba1-xSrxCo1-yFeyO3-d and
Ln1-xSrxCo1-yFeyO3-d, it also exhibits a low thermal ex-
pansion coefficient of 12.6 × 10-6 K-1, good structural
compatibility and chemical stabilitywith IT electrolytes 7.
However, pure LNO shows large-area specific resis-
tance of 15.27Xcm2 at 700 °C for the symmetrical cell of
LNO/YSZ/LNO8. Low cell performance (91mWcm-2 at
700 °C) with LSGM electrolyte was observed, indicating
that LNO-based cathode performance should be further
improved based on optimization of the cathode compo-
sition and microstructures 9. Furthermore, high oxygen
flux in LNO can generally be observed owing to high in-
terstitial oxygen concentration, but it also decreases defect
mobility and causes the change in the electronic configu-
ration10.
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One effective way is that appropriate acceptor doping
on the La-site with alkaline earths such as Sr and Ca
can improve the electronic conductivity in p-type con-
ductor LNO owing to the extra generating electron holes
(NiNi) by the charge compensation 11. However, the sub-
stitution of La by alkaline earths causes the reduction
of interstitial oxygen concentration, resulting in the ion-
ic conductivity of LNO12, 13. Furthermore, chromium
deposition is easily generated on alkaline-earth-contain-
ing cathode materials, resulting in a rapid degradation of
cell performance 14 – 17. Another strategy has been pro-
posed based on doping of a slight amount in the Ni-
site with other transition metals. Compared to undoped
LNO, La2Ni0.9Cu0.1O4+d (LNCO) has less interstitial
oxygen 10, but much higher oxygen diffusion with fast
surface exchange rate was observed at intermediate tem-
peratures for Cu-doping. That is because Cu-doping can
shorten the Ni(Cu)-O(equatorial) bond in the Ni(Cu)O6
octahedron and mitigate the rotation of the Ni(Cu)O6
octahedron owing to the Jahn-Teller effect 18. Moreover,
Cu-doping in LNO could increase the sintering activity,
which helps achieve an excellent cathode-electrolyte in-
terface, and is beneficial to oxygen-ion transport through
this interface 19, 20. In this work, Cu was selected as a
dopant in LNO in order to improve sinterability and elec-
trode performance. LNO and LNCO are prepared, and
then the effects of Cu on the crystal structure, interstitial
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oxygen, electrical conductivity and catalytic activity, and
chromium tolerance are comparatively investigated and
evaluated.

II. Experimental
LNO and LNCO were prepared in a citric acid-EDTA
process as described in our previous work 21. X-ray pho-
toelectron spectroscopy (XPS, ht= 1486.6 eV) was ap-
plied to analyze the valence of the composition elements.
Electrical conductivity was measured with an H.P. mul-
timeter with the standard d.c. four-probe technique at
400 – 800 °C in air. The chemical compatibility of LNO
and LNCO with Cr2O3, mixed in a weight ratio of 1:1,
was investigatedwithhigh-temperatureXRDfrom500°C
to 900 °C.
To comparatively evaluate the electrochemical ac-
tivity at the two LNO and LNCO cathodes on the
GDC electrolyte, the configuration of cathode/GDC
(∼ 1 mm)/cathode (∼ 30 lm) was fabricated to test sym-
metrical electrochemical cells as previously described 22.
AC impedance spectroscopy (Chi604c, Shanghai Chen-
hua) was used to analyze symmetrical electrochemical
cells from 500 to 700 °C.

III. Result and Discussion
Fig. 1 presents XRDpatterns of LNO and LNCOpow-
ders sintered at 1100 °C for 3 h in air. Both as-prepared
oxides were identified as Ruddlesden-Popper-type struc-
tures, and agreedwell with the reported data6. GSAS soft-
ware forRietveld refinementswas used to further confirm
twoXRDpatterns, and the refinementparameters arepre-
sented inTable 1. It canbeobserved thatLNOandLNCO
oxides exhibited the tetragonal structure with the space
group of I4/mmm(139), indicating the experimental and
calculated results present excellent consistency. Although
Cu-doping in LNO cannot change the symmetry of the
Ruddlesden-Popper-type lattice, the lattice parameter
parallel to the rock salt layer after Cu-doping slightly de-
creases because of the shorterNi(Cu)-O(equatorial) bond
in theNi(Cu)O6 octahedron 19. The rock salt and octahe-

dron structure jointly cause a small increase of the lattice
parameter perpendicular to the rock salt layer, which is
in good agreement with Nakamura’s study 10. Moreover,
HT-TEM images of LNO and LNCO corresponding to
the lattice spacing of 0.3688 nm(101) and 0.3678 nm(101)
are given in Fig. 2, respectively, and the results are consis-
tent with those obtained with XRD analysis.
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Fig. 1: XRD Rietveld refinement of as-prepared LNO (a) and
LNCO (b) calcined at 1100 °C for 3 h in air.

Fig. 2: HT-TEM images of LNO (a) and LNCO (b).
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Table 1:Refinement parameters derived fromXRD patterns.

Composition wRp(%) Rp(%) v2 a(Å) c(Å) v(nm3)

La2NiO4+d 8.31 5.93 0.8475 3.8567(4) 12.6654(2) 188.39

La2Ni0.9Cu0.1O4+d 8.52 6.07 0.8037 3.8553(8) 12.7115(5) 188.94

To estimate the concentration of the interstitial oxygen,
XPS was used to analyze the different chemical states in
LNOandLNCO,where all these elemental valenceswere
analyzed with the method of Shirley-type background
subtraction, and every background function of elements
was fitted by 20% Lorenz and 80% Gaussian. Fig. 3(a-
c) and Fig. 4 (a-d) show the XPS spectroscopies of as-pre-
pared LNO and LNCO samples, respectively. The La3d
core level XPS spectra of LNO are shown in Fig. 3(a),
where three binding energies at 833.1, 834.5 and 837.7 eV
assigned as La3+ 3d 5/2, and three binding energies at
850.3, 851.3 and 854.2 eV assigned as La3+ 3d 3/2 are ob-
served,whichareveryclose to the similar compoundswith
La3+ in LNO 23. Fig. 3(b) shows the Ni2p core level XPS
spectra of LNO, wherethe main chemical states of Ni are
+2 and +3. Ni2+ (2p 1/2), and Ni2+ (2p 3/2) peaks are
found at 854.5 eV and 851.2 eV, respectively, while Ni3+
(2p 1/2) and Ni3+ (2p 3/2) peaks occur at 864.1 eV and
849.9 eV, in which the ratio of Ni2+/Ni3+ as calculated is
about 58.7:41.3. The O1s core level XPS spectra of LNO
are given in Fig. 3(c) and the binding energies are 531 and
528.5 eV. According to the charge neutrality in LNO, the
interstitial oxygen concentration can be calculated to be

0.2065. It is observed that the interstitial oxygen concen-
trationmeasuredwithXPS is a little higher than that mea-
suredwith high-temperatureTG (about 0.12 at 600 °C 10),
that is because the samples for XPS measurements were
analyzed at room temperature, and the reference value by
high-temperature TG was given at 600 °C. The lower the
temperature, the higher the interstitial oxygen concentra-
tion should be. Accordingly, the La3d, Ni2p, Cu2p and
O1s core level XPS spectrum of LNCO are presented in
Fig. 4(a-d), respectively. Cu-doping in LNO presents no
obvious change of the chemical state of Ni. However, the
calculated ratioofNi3+ is reduced toonly 33%, indicating
that the interstitial oxygen concentration is 0.165,which is
similar to findings thatCu-dopinghas less interstitial oxy-
gen1. Fig. 4(c) presents the Cu2p core level XPS spectra
wherethe main chemical state of Cu is +2 and the binding
energies are 933.6 eV and 942.2 eV, indicating nomonova-
lent Cu exists. It can be inferred that theCu incorporation
inNi(Cu)O6 octahedron structure restricts oxygen inser-
tion into the rock salt layer owing tomuch strongerdistor-
tion in Cu2+O6 (d9 state) than in Ni2+O6 (d8 state), and
thus LNCOhas a smaller oxygen content than LNO 10.
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Fig. 3: XPS spectroscopy of La3d (a), Ni2p (b), and O1s (c) of LNO.
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Fig. 4: XPS spectroscopy of La3d (a), Ni2p (b), Cu2p (c) and O1s (d) of LNCO.
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Fig. 5: Temperature dependence of the conductivity for LNO and
LNCO samples.

The electrical properties in LNO-based oxides greatly
depend on the interstitial oxygen and holes for electro-
chemical devices.Meanwhile, the oxygen incorporation in
LNO-based oxides can also result in the production of the
interstitial oxygen and holes as follows:

1
2
O2 +V×

i ↔ O′′
i + 2h

· (1)

Fig. 5 shows the electrical conductivity curves of LNO
andLNCOsamples in air, respectively. The electrical con-
ductivity of LNO gently decreases as the temperature in-
creases, and themaximumvalueof122.6Scm-1 isobserved
at about 400 °C, suggesting that thermally deactivated
metal-like band conduction at high temperatures 24. After

Cu-doping in LNO, the electrical conductivity decreases,
and themaximum value of 92.2 Scm-1 is observed at about
400 °C. Generally, the electrical conductivity mainly de-
pends on the carrier concentration and mobility, and can
be expressed by

σp =NpµpP (2)
where Np, µp and P are the volume concentration, the
mobility and the concentration of carriers, respectively.
Therefore, the difference in the electrical conductivity in
LNOandLNCO ismainly caused by the different carrier
concentration, which depends on the amount of intersti-
tial oxygen in accordance with the above results 25, 26.
In LNO-based oxides, both oxygen vacancy and intersti-
tial oxygen are active oxygen point defects for the electro-
chemical properties, and there is an exchange reaction be-
tween the oxygen vacancy and interstitial oxygen:

O
×
O +V

×
i ↔ V··

O +O
′′
i (3)

The balance of oxygen vacancy and interstitial oxygen
determine the oxygen transport properties like oxygen
surface exchange and bulk transport, which greatly affects
the electrochemical properties 27. To understand the ef-
fects of Cu-doping in LNO on electrode performance,
symmetric cells with LNO and LNCO electrode were
evaluated based on AC impedance at the temperature
range of 800 – 550 °C as shown in Fig. 6. The value of the
ohmic resistance (Ro) is the first intercept of the Z‘axis at
high frequencies, while the polarization resistance (Rp)
is the difference between the first and last intercept of
the Z‘axis at low frequencies, where Ro and Rp generally
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Fig. 6: The AC impendence of the symmetric cells with LNO (a) and LNCO (b) electrodes from 800 °C to 550 °C.
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Fig. 7: The apparent activation energy of interfacial polarization
resistances for LNO and LNCO electrodes.

increase gradually with decreasing temperature 28. It can
be observed in Fig. 6(a) that Rp for LNO significant-
ly increased from 2.20Xcm2 at 800 °C to 185.48 Xcm2
at 550 °C, respectively. After Cu-doping in LNO, Rp
is reduced to 0.54 Xcm2 at 800 °C and 82.14 Xcm2 at
550 °C as shown in Fig. 6(b), respectively. The activation
energy (Ea) for Rp of LNO is 141.75 kJ mol-1 as shown
in Fig. 7, and LNCO has a low Ea (116.79 kJ mol-1),
which has a greater advantage in low temperature com-
pared with La0.8Sr0.2Co0.8Fe0.2O3-d (Ea = 202 kJ mol-1)
and La0.8Sr0.2CoO3-d, (Ea = 164 kJ mol-1) 29.

Nowwe briefly evaluate the contribution to the electro-
chemical properties of LNO-based oxides on the carri-
er concentration, interstitial oxygen and oxygen vacancy.
From above electrical conductivity results, the more the
carrier concentration, the higher the electrical conductivi-
ty.However, the electrical conductivity is not themost im-
portant factor for the electrochemical propertieswhile the
electrical conductivity is around 100 Scm-1, for example,
Ba0.5Sr0.5Co0.8Fe0.2O3-d 30. A. Aguadero et al. 31 report-
ed that the polarization resistance of La2Ni1 – xCuxO4 + d

on LSGM electrolyte decreases with Cu content, indicat-
ing that high interstitial oxygen concentration does not
necessarily result inhighcatalytic activity.ForSrdoping in
LNO-basedoxides, theoxygennon-stoichiometry can al-
so greatly affect the conduction mechanism, the electron-
ic state and the electrochemical properties 12, 32, 33. Impor-
tantly, oxygen defect species in two-perovskite-layer ox-
ide, Sr3Fe2O7-d, are oxygen vacancies located in the apical
O1 and equatorial O3 lattices, and Sr3Fe2O7-d still exhib-
ited excellent mixed ionic and electronic transport prop-
erties 34, 35. Accordingly, the cathode microstructure and
the excellentmatching between the electrode and the elec-
trolyte material can also greatly affect the electrochemical
properties.
To analyze the effect of the chromium tolerance of LNO
and LNCO, Fig. 8 shows the high-temperature XRD
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Fig. 8: Chemical compatibility of LNO (a) and LNCO (b) with Cr2O3 measured by means of high-temperature XRD from 500 °C to 900 °C.
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results of LNO and LNCO with Cr2O3 mixture (the
weight ratio of 1:1), respectively, because Cr is uniformly
distributed in the interior of the electrode with Cr2O3.
From 500 °C up to 900 °C, both LNO and LNCO with
a K2NiF4-type structure and Cr2O3 with a corundum
type structure can only be observed, and no newpeaks are
produced, indicating a relatively high chromium tolerance
of LNO and LNCO below 900 °C. All in all, there is no
chemical reaction betweenCr2O3 and the electrodes. The
experimental results demonstrate that LNO with Cu-
doping can enhance electrochemical performance, and
show excellent chromium tolerance working as a promis-
ing chromium-tolerant cathode for IT-SOFCs.

IV. Conclusions
In this work, the effect of Cu-doping in the Ruddles-
den-Popper-typeoxides LNO and LNCO on the crystal
structure, interstitial oxygen formation, electrical conduc-
tivity, catalytic activity and chromium tolerancewas char-
acterized and evaluated. XRD Rietveld and HT-TEM re-
sults together confirm both were identified as the Rud-
dlesden-Popper-type structures with tetragonal symme-
try. LNCO has less interstitial oxygen because the Cu
incorporation in the Ni(Cu)O6 octahedron structure re-
stricts the oxygen insertion into the rock salt layer. The
electrical conductivity decreases owing to the reduction
of the carrier concentration after Cu-doping. The effects
on electrode performance using symmetric cells were ana-
lyzed, and interface polarization resistance at 800 °C is re-
duced from2.20Xcm2 to0.54Xcm2afterCu-doping.HT-
XRD results indicate both have a relatively high chromi-
um tolerance below 900 °C. The present results demon-
strate that LNOwithCu-doping canwork as a promising
chromium-tolerant cathode.
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