Mechanical Properties, Strengthening and Toughening Mechanisms of Reactive-Hot-Pressed TiB₂-SiC-Ni Ceramic Composites

G. Zhao¹, C. Huang², N. He¹, H. Liu²

¹College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
²Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Shandong University), Ministry of Education, P. R. China

Abstract

A TiB₂-SiC-5 wt % Ni ceramic composite with high flexural strength and fracture toughness was fabricated in the reactive hot pressing (RHP) process. Different sintering times and sintering temperatures were employed. The strengthening and toughening mechanisms were investigated in detail. The composition and microstructure were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and energy-dispersive spectroscopy (EDS). The sintering time and sintering temperature had a significant influence on the mechanical properties and microstructure of the composite. The mechanical properties decreased as the sintering time was increased from 30 to 45 min, and subsequently increased with the further increase of the sintering time. The mechanical properties of the composite increased gradually as the sintering temperature increased. For the investigated range of parameters, the composite prepared at 1700 °C for 30 min had the optimum comprehensive mechanical properties with flexural strength of 1121 ± 31 MPa, fracture toughness of 7.9 ± 0.58 MPa m¹/² and hardness of 21.3 ± 0.62 GPa. The improved flexural strength and fracture toughness of the composite were attributed to the strengthening and toughening effects of Ni and the elongated TiB₂ grains, the intragranular nano-particle structure, and the dislocations and stacking fault. The clean interface is also conducive to the improved flexural strength.

Keywords: TiB₂-SiC-Ni composite, mechanical properties, microstructure, reactive hot pressing, strengthening and toughening mechanism.

I. Introduction

Titanium diboride (TiB₂) has an excellent combination of properties including high hardness and elastic modulus, high melting point, good abrasive resistance, superior thermal and electrical conductivity. These properties make it ideally suited for high-temperature structural applications such as cutting tools, armor and wear parts. However, the comparatively high vapor pressure of the TiB₂ at room temperature can be significantly enhanced with the addition of Ni as binder. In addition, it has been confirmed that the mechanical properties and oxidation resistance of TiB₂ can be improved with the addition of SiC. TiB₂-SiC ceramic composite can be fabricated by means of different densification techniques. Shih et al. prepared TiB₂-SiC ceramic composites with 1–10 wt% SiC using pressureless sintering (PS) and hot isostatic pressing (HIP) methods. Zhu et al. prepared TiB₂-SiC ceramic composite with 96 % density in an in-situ HIP process. However, the fracture toughness of the composites prepared with these methods was lower than 5 MPa.m¹/². Chen et al. first used the high-frequency induction heating method to fabricate TiB₂-SiC composite and the mechanical properties were relatively high. In our previous study, TiB₂-SiC ceramic composites with relatively high fracture toughness were prepared using the hot pressing (HP) method. Reactive hot pressing (RHP) is an in-situ technique that can be used to fabricate ceramic composites at relatively low temperatures. As well as the low-temperature processing, the advantages of the RHP method consist of increased control over microstructure development and properties, and the use of dense TiB₂-based ceramics. The flexural strength of TiB₂ at room temperature can be significantly enhanced with the addition of Ni as binder. In addition, it has been confirmed that the mechanical properties and oxidation resistance of TiB₂ can be improved with the addition of SiC. TiB₂-SiC ceramic composite can be fabricated by means of different densification techniques. Shih et al. prepared TiB₂-SiC ceramic composites with 1–10 wt% SiC using pressureless sintering (PS) and hot isostatic pressing (HIP) methods. Zhu et al. prepared TiB₂-SiC ceramic composite with 96 % density in an in-situ HIP process. However, the fracture toughness of the composites prepared with these methods was lower than 5 MPa.m¹/². Chen et al. first used the high-frequency induction heating method to fabricate TiB₂-SiC composite and the mechanical properties were relatively high. In our previous study, TiB₂-SiC ceramic composites with relatively high fracture toughness were prepared using the hot pressing (HP) method. Reactive hot pressing (RHP) is an in-situ technique that can be used to fabricate ceramic composites at relatively low temperatures. As well as the low-temperature processing, the advantages of the RHP method consist of increased control over microstructure development and properties, and the use of dense TiB₂-based ceramics.
cheaper, more abundant precursors. A variety of ceramic composites including ZrB₂-SiC, TiB₂-SiC, ZrB₂-MoS₂, Al₂O₃-MoS₂ have been prepared with the RHP method. The mechanical properties of these composites were superior to composites with the same composition but prepared with the conventional process. Particularly, TiB₂-based ceramic composites with in-situ synthesized elongated TiB₂ grains can be prepared using the RHP process. The microstructure of the composites is different from those prepared in the non-RHP process (PS, HP and HIP) and the mechanical properties are improved.

Up to now, very few reports on the microstructure and mechanical properties of reactive-hot-pressed TiB₂-SiC ceramic composites with Ni as binder can be noted. In the present work, TiB₂-SiC ceramic composite with 5 wt% Ni as binder was synthesized in-situ in the RHP process. The effects of sintering times and sintering temperatures on the microstructure and mechanical properties of the composite were studied. The strengthening and toughening mechanisms of the composite were investigated in detail.

II. Experimental Procedure

(1) Materials preparation

The TiB₂-SiC-Ni ceramic composites were prepared by means of the RHP process according to the following reaction:

\[\text{Si} + 2\text{Ti} + \text{B}_4\text{C} + x\text{Ni} \rightarrow 2\text{TiB}_2 + \text{SiC} + x\text{Ni} \]

(1)

where \(x \) is the amount of nickel powder (mol) used as the additive. In the present work, \(x = 0.166 \) was employed in order to maintain the theoretical content of Ni at 5 wt% in the ceramic composite. The starting materials were silicon, titanium, boron carbide and nickel powders. Their grain sizes and the purities provided by the suppliers are listed in Table 1. The titanium raw powder was firstly ball-milled in ethanol medium using tungsten carbide (WC) balls (8 – 10 mm) for 96 h at 325 rpm in order to break down any agglomerated particles, and then the powder was dried at 120 °C in a vacuum dry oven (Guang Ming) for further use. The stoichiometric powders were mixed and ball-milled using analytical-grade ethanol as the medium with WC balls (8 – 10 mm) for 48 h at 325 rpm in polyethylene jars. The ball-powder mass ratio was fixed at 1:1. After mixing, the slurry was dried in a vacuum dry oven at 120 °C and sieved through a 120-mesh sieve. Subsequently, the mixture was placed into a cylindrical graphite die and then reactive-hot-pressed at a heating rate of 50 K/min under a uniaxial pressure of 32 MPa in vacuum. Different sintering times and temperatures were employed. The sintered samples were in the form of 4.5-mm disks with a diameter of about 42 mm.

(2) Mechanical properties measurement

The reactive-hot-pressed disks were sectioned into several specimens with dimensions of 3 mm × 4 mm × 36 mm using an electrical discharge machine (EDM, DK7716). Subsequently, the surfaces of the testing bars were polished using polishing machinery (P-2) with diamond slurries (1 μm). The edges of all the samples were chamfered to minimize the stress concentration induced during the machining process. The flexural strength was measured in static air using a three-point tester (Instron, 8801) with a support span of 30 mm and a loading rate of 0.5 mm/min. The load was applied parallel to the pressing direction and the flexural strength was averaged from six specimens. The Vickers hardness was measured on the polished surface using a Vickers diamond pyramid indenter (HVS-50) with a static load of 196 N and a loading time of 15 sec. The values of the fracture toughness (K₁C) were calculated with Equation (2), reported by Fukuhara et al. The values of hardness and fracture toughness were calculated from the average of ten indentations.

\[K_{1C} = 0.203H_Va^{1/2} \left[\frac{C}{a} \right]^{-3/2} \]

(2)

where \(H_V \) is the Vickers hardness, \(2a \) is the length of the impression diagonal and \(2c \) is the overall indentation crack length including \(2a \).

Table 1: Characteristics of the starting powders.

<table>
<thead>
<tr>
<th>Powder</th>
<th>Purity</th>
<th>Particle size (μm)</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>99.9%</td>
<td>1.0 ± 0.1</td>
<td>Shanghai St-Nano science and Technology Co., Ltd</td>
</tr>
<tr>
<td>Ti</td>
<td>99.5%</td>
<td>45.0 ± 5.5</td>
<td>General Research Institute for nonferrous Metals</td>
</tr>
<tr>
<td>B₄C</td>
<td>99.0%</td>
<td>7.0 ± 1.5</td>
<td>Jingtangzuan Boron Carbide Co., Ltd</td>
</tr>
<tr>
<td>Ni</td>
<td>99.9%</td>
<td>0.05</td>
<td>Shanghai St-Nano science and Technology Co., Ltd</td>
</tr>
</tbody>
</table>

(3) Characterization

The phase composition was characterized by means of X-ray diffraction (XRD) (Hitachi RAX-10A-X). CuKα1 radiation (λ=1.54050 Å) and a scan step of 0.2 °/min were used. The XRD peaks were identified by matching to the JCPDS-ICDD data cards. The fractured and polished surfaces were observed with an SEM (JEOL), X-ray diffractometer (EDS, Oxford). The characterization of the composite, including the distribution of the grains, interface, compositions and defects, was analyzed using an energy-dispersive spectrometer (EDS, EDAX). The TEM samples were prepared with a focused ion beam (FIB, Auriga-60, ZEISS) using the InGa method.

III. Results and Discussion

(1) Phase identification

According to Equation (1), the TiB₂-SiC ceramic composites with different contents of Ni as binder can be prepared by changing the value of \(x \), indicating that the microstructure and mechanical properties of the composites...
can be tailored via the RHP process. In the present study, the theoretical mass fractions of TiB$_2$ and SiC were 73.7% and 21.3% respectively, thus TiB$_2$ and SiC can be treated as the matrix and secondary-phase particles respectively. The XRD pattern of the composite prepared at 1700 °C for 30 min is shown in Fig. 1. TiB$_2$-SiC-Ni ceramic composite was successfully synthesized in-situ with the RHP process using Si, Ti, B$_4$C and Ni as raw materials. Except for TiB$_2$, SiC and Ni, no other phases with significant peak intensity were found, demonstrating that the reaction took place in accordance with Equation (1) and a full conversion of reagents into products was achieved. In the literature20, the brittle phase of Ni$_3$B$_4$ was found in the TiB$_2$-based ceramic composite prepared with the HP process. The brittle phase was ascribed to the reaction between TiB$_2$ and Ni, and decreased the mechanical properties of the composite. However, in the present work, no brittle phase was detected, indicating that Ni was more stable in the ceramic composite prepared with the RHP process. This is one of the advantages of RHP as a sintering method to form ceramic composites.

Fig. 1: XRD pattern of the TiB$_2$-SiC-Ni ceramic composite.

The SEM micrograph of the polished surface of the composite prepared at 1700 °C for 30 min and the corresponding EDS mapping are shown in Fig. 2. Three kinds of materials with different backscattered electron contrast were observed on the polished surface. The EDS mapping revealed that the dark contrast was SiC, the gray contrast was TiB$_2$ and the bright contrast was Ni. The network-structured SiC was distributed in the TiB$_2$ matrix and the microstructure of the composite was heterogeneous with clusters of TiB$_2$ grains. Ni as binder was mainly distributed in the interfaces of TiB$_2$-SiC and TiB$_2$-TiB$_2$ rather than the interface of SiC-SiC, which resulted in the drop of SiC grain from the polished surface as shown in Fig. 2.

(2) Effect of sintering time on the mechanical properties and microstructure

The effect of the sintering time on the mechanical properties of the TiB$_2$-SiC-5 wt%Ni ceramic composite prepared at 1700 °C is shown in Fig. 3. It can be seen that the flexural strength, fracture toughness and hardness decreased as the sintering time increased from 30 to 45 min, and subsequently increased with the further increase of the sintering time. For the investigated range of parameters, the composite prepared at 1700 °C for 30 min had the optimum comprehensive mechanical properties with flexural strength of 1121 ± 31 MPa, fracture toughness of 7.9 ± 0.58 MPa m$^{1/2}$ and hardness of 21.3 ± 0.62 GPa. The mechanical properties of the TiB$_2$-SiC-5 wt%Ni ceramic composite were higher than that of the TiB$_2$-SiC ceramic composite prepared in our previous study18. A TiB$_2$-SiC ceramic composite with higher hardness (28.6 GPa) was fabricated using the RHP process by Zhang et al.15. However, the flexural strength and fracture toughness in their paper were only about 654 MPa and 6.8 MPa m$^{1/2}$ respectively, which was lower than that in the present study. In addition, the flexural strength and fracture toughness of the TiB$_2$-SiC ceramic composites reported in other studies were relatively low (less than 700 MPa and 7 MPa m$^{1/2}$ respectively). Therefore, the addition of Ni as a binder improved the mechanical properties of the composite significantly. The composite prepared at 1700 °C for 45 min had relatively low mechanical properties with flexural strength of 864 ± 25 MPa, fracture toughness of 6.7 ± 0.51 MPa m$^{1/2}$ and hardness of 20.0 ± 0.71 GPa. The flexural strength was still higher than that of the TiB$_2$-SiC composites without Ni as additive.

Fig. 2: SEM image of the polished surface and the EDS mapping.

The SEM images of the fractured surfaces of the composite prepared at 1700 °C for different sintering times are shown in Fig. 4. It can be seen from Fig. 4(a) that the grains size was less than 3 μm, indicating that a ceramic composite with a fine microstructure could be synthesized with the RHP process using starting powders with larger particle size. The fracture of the composite sintered for 30 min was characterized by a mixed mode of intergranular and...
transgranular fracture, which enhanced its fracture toughness. It was difficult to observe pores on the fractured surface, indicating a high relative density. As a result, the flexural strength and hardness of the composite increased. As the sintering time increased to 45 min, a few large grains (>5 μm) were observed, as shown in Fig. 4(b). Moreover, a number of pores were distributed in the composite, indicating a low relative density. As a result, the flexural strength and hardness of the composite decreased. Exaggerated grain growth was found on the fractured surface shown in Fig. 4(c). According to Hall-Petch relationship, the flexural strength decreased as the grain size increased. Few pores can be observed in the composite, indicating a high relative density. Thus the composite possessed a relatively high hardness. The fracture mode was a mixed mode of intergranular and transgranular fracture, which improved the fracture toughness of the composite.

Fig. 3: Effect of sintering time on the mechanical properties of the composite sintered at 1700 °C.

(3) Effect of sintering temperature on the mechanical properties and microstructure

The effect of the sintering temperature on the mechanical properties of the TiB₂-SiC-5 wt%Ni ceramic composite sintered for 30 min is shown in Fig. 5. The flexural strength, fracture toughness and hardness increased gradually as the sintering temperature increased. For the investigated range of parameters, the composite prepared at 1700 °C for 30 min had the optimum comprehensive mechanical properties with flexural strength of 1121 ± 31 MPa, fracture toughness of 7.9 ± 0.58 MPa·m^(1/2) and hardness of 21.3 ± 0.62 GPa. The SEM images of the fractured and polished surfaces of the composite sintered at 1600 °C for 30 min are shown in Fig. 6. A number of pores can be observed on the fractured surface shown in Fig. 6(a), indicating a low relative density. In addition, the distribution of the SiC grains was heterogeneous and some grains dropped from the polished surface, as shown in Fig. 6(b). As a result, the flexural strength and hardness of the composite decreased. With a further increase of the sintering temperature to 1650 °C, it can be seen from Fig. 7(a) that the porosity decreased. Besides, the fracture mode was characterized by a mixed mode of intergranular and transgranular fracture, as shown in Fig. 7(b). As a result, the mechanical properties of the composite increased.

Fig. 4: SEM images of the fractured surfaces of the composites sintered for (a) 30, (b) 45 and (c) 60 min.

Fig. 5: Effect of sintering temperature on the mechanical properties of the composite sintered for 30 min.
(4) Strengthening and toughening mechanisms

Compared with the TiB₂-SiC ceramic composites prepared in our previous study, the flexural strength and fracture toughness of the TiB₂-SiC-5 wt% ceramic composite are significantly improved. Regarded in combination with the microstructural analysis, the strengthening and toughening mechanisms of the composite are discussed in detail.

First, the addition of Ni as binder is conductive to improving the flexural strength and fracture toughness of the composite. The STEM images of the composite prepared at 1700 °C for 30 min are shown in Fig. 8. The EDS patterns shown in Fig. 9(a-d) reveal that the gray, black and white phases are TiB₂, SiC and Ni respectively. It is seen from Fig. 8(a) that Ni is mainly distributed in the interfaces and triple grain junctions. As a result, the interface bond strength and the relative density are enhanced. In addition, the ductile phase toughening effect of Ni improves the fracture toughness of the composite. When the crack propagates to Ni in the composite, the ductile Ni contributes to the toughness by inhibiting crack opening. Simultaneously, the plastic straining of Ni causes crack shielding. As a result, the fracture toughness of the composite is increased.

Fig. 6: SEM images of the (a) fractured and (b) polished surfaces of the composite sintered at 1650 °C.

Fig. 7: SEM images of the (a) fractured and (b) polished surfaces of the composite sintered at 1650 °C.

Fig. 8: STEM images of (a) the composite and (b) magnification of the frame region.
Second, the improved fracture toughness is attributed to the intragranular nano-particle structure. As shown in Fig. 8(b), an intragranular TiB$_2$ nano-particle is observed in SiC. The intragranular TiB$_2$ nano-particle can not only inhibit the grain growth of SiC, but also change the fracture mode of the composite. A schematic diagram of crack propagation in the composite is shown in Fig. 10. Owing to the mismatch of the thermal expansion coefficient between TiB$_2$ (4.6×10^{-6}/K) and SiC (4.02×10^{-6}/K), a weak interface exists. Thus the crack is prone to cross the SiC grain and reach the boundary between the intragranular TiB$_2$ nano-particle and SiC. As a result, more crack extension energy is consumed and the fracture toughness of the composite is increased.

Third, the improved flexural strength is also attributed to the clean interface. In the present work, because of the exothermic reaction (Equation (1)) in the RHP process, an extremely high temperature was generated during the reaction process. Therefore, the low-melting-point impurities vaporized, and a relatively clean interface was obtained. Fig. 11 shows the HRTEM image of the interface between the TiB$_2$ and SiC grains shown in Fig. 8(b). This kind of clean interface is conducive to improved flexural strength. Additionally, it is seen from the HRTEM image that the SiC grain is a single crystal. It is well-acknowledged that single crystal has high strength and elastic modulus. Thus more fracture energy is consumed when the crack crosses the SiC grain. As a result, the flexural strength and fracture toughness of the composite are increased.

![Fig. 10: Schematic diagram of crack propagation in the composite.](image)
The morphology of the polished surface of the composite is shown in Fig. 12(a). A number of elongated grains are randomly oriented and uniformly distributed in the composite. The elongated grains are 0.5 – 1.5 \(\mu \)m in diameter and 3 – 10 in aspect ratio. The EDS analysis shown in Fig. 12(b) reveals that the elongated grain is TiB\(_2\). The improved flexural strength and fracture toughness of the composite are ascribed to the strengthening and toughening mechanisms of the elongated TiB\(_2\) grains including crack deflection, crack bridging, crack branching, grain fracture and grain pullout, as discussed in our previous study\(^\text{18}\). In addition, specific microstructural features such as intragranular elongated grain, dislocations and stacking faults are also observed in the composite, as shown in Fig. 13 and Fig. 14. The HRTEM shown in Fig. 13(b) demonstrates that the elongated grain shown in Fig. 13(a) is a single crystal. The interlayer spacing measured from the image is about 3.3 \(\AA \), which is consistent with the lattice parameter of TiB\(_2\). Similar to the strengthening and toughening mechanisms of the elongated TiB\(_2\) grains discussed above, the intragranular elongated TiB\(_2\) grain is also conducive to improved flexural strength and fracture toughness. When the crack reaches the dislocation or stacking fault areas, the dislocations or stacking fault in the matrix operates as nano-crack nuclei in the vicinity of the propagating crack tip\(^\text{22}\). The stress field near the crack tip is released by nano-crack nucleation and the fracture toughness and flexural strength of the composite are further increased.
also change the fracture mode of the composite. The dislocations and stacking fault can release the stress near the crack tip and enhance the flexural strength. In addition, the clean interface is also conducive to the improved flexural strength of the composite.

Acknowledgements
The work is supported by Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology (20166398), and Zhejiang Provincial Key Laboratory for Cutting Tools (ZD201603).

References

