J. Ceram. Sci. Tech., **08** [01] 67-72 (2017) DOI: 10.4416/JCST2016-00089 available online at: http://www.ceramic-science.com © 2017 Göller Verlag

Photocatalytic Properties of Nanocrystalline TiO₂ coupled with Up-Conversion Phosphors

S. Mavengere, H. M. Yadav, J.-S. Kim^{*}

Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea received October 28, 2016; received in revised form December 9, 2016; accepted January 10, 2017

Abstract

NaYF₄:(Yb³⁺, Er³⁺) up-conversion phosphor was synthesized with the combustion method and coated with TiO₂ nanoparticles by means of a sol-gel technique. Emission peaks of the up-conversion phosphor were located at 523, 544 and 655 nm under irradiation with a 980 nm infrared (IR) dot laser light with 40 mW. TiO₂-coated NaYF₄:(Yb³⁺, Er³⁺) phosphor showed similar emission peaks with reduced intensities. The photocatalytic activity of the TiO₂-coated up-conversion phosphor particles was investigated based on the degradation of aqueous methylene blue (MB) solution under irradiation with a 200-W visible light of wavelength $\lambda > 410$ nm. TiO₂-coated NaYF₄:(Yb³⁺, Er³⁺) phosphor particles showed enhanced photocatalytic activity compared with pure TiO₂ powders. The mechanism for enhanced photocatalytic activity was explained in relation to the energy band structure that exists at the interlayer between the NaYF₄:(Yb³⁺, Er³⁺) phosphor and TiO₂ nanoparticles.

Keywords: Up-conversion phosphor, NaYF4:(Yb³⁺, Er³⁺), TiO₂, photocatalysis, visible-light photo-reaction

I. Introduction

TiO₂ is a widely used semiconductor in the synthesis of photocatalysts for environmental pollution control, photovoltaics, sensors, conversion and energy storage devices because of its unique photoelectric properties, high chemical stability and environmental safety. The major drawback of TiO₂ in photocatalysis application is the high charge recombination rate and wide band gap of 3.0 ~ 3.2 eV, which limits electron and hole photogeneration under visible light irradiation. Research has been conducted on TiO₂ photocatalysts to modify them to absorb visible light irradiation. The methods for modifying TiO₂-based photocatalysts consist of metal ion doping of TiO2 with metals such as Fe, Cr, Ni and Ag $^{1-3}$; and coupling TiO₂ with inorganic oxides such as SiO_2 , SnO_2 and $WO_3^{4,5}$. In addition, long-lasting phosphors have been coupled with TiO₂ photocatalysts to enhance visible light absorption. The TiO₂ photocatalysts coupled with long-lasting phosphor materials such as (Ca,Sr)O-Al₂O₄:Eu³⁺ compounds showed enhanced photocatalytic activity under visible light irradiation 6,7.

One interesting phosphor for coupling with photocatalysts is a kind of up-conversion phosphor since it is capable of absorbing near-infrared (NIR) light. NaYF₄ is considered an efficient up-conversion host matrix with low phonon energy and a wide band gap of ~8 eV. The crystal structures of NaYF₄ exist in two polymorphic forms, which are cubic (α) and hexagonal (β) phases. Up-conversion efficiency depends on the phase and particle size. For example, the β -NaYF₄ phase exhibits ~ 10 times higher upconversion efficiency than α -NaYF₄⁸. NaYF₄ co-doped with Yb³⁺and Er³⁺ ions forms up-conversion phosphors with the average particles sizes of 30-40 nm, which were synthesized with a combustion method at 650 °C. Low-temperature combustion synthesis of up-conversion phosphors has several advantages over other traditional methods such as a precise stoichiometric ratio, low temperature and short reaction time ⁹. Yb³⁺ ions have a large absorption cross-section to 980 nm laser diode excitation source, and therefore it acts as a sensitizer while Er³⁺ ions act as an activator ¹⁰. The up-conversion photoluminescence occurs through energy transfer from Yb³⁺ to Er³⁺, producing either green, red or blue ultraviolet light when irradiated with NIR photons ¹¹. Up-conversion emission peak intensities and ratio of various peaks are influenced by the dopant concentration (Yb³⁺, Er³⁺), excitation power, preparation temperature and impurities in the starting materials ¹².

In this study, the coupling of TiO₂ with up-conversion phosphor NaYF₄:(Yb³⁺, Er³⁺) was attempted to produce a new photocatalyst composite which could work under ultraviolet (UV), visible and NIR irradiation. The twostep combustion method was adapted for preparing the up-conversion phosphor NaYF₄:(Yb³⁺, Er³⁺) particles, and then followed by coating of the TiO₂ layer in a solgel process. The photocatalytic activities of TiO₂-coated up-conversion phosphor NaYF₄:(Yb³⁺, Er³⁺) were investigated using the photodegradation of aqueous methylene blue (MB) solution under visible light irradiation.

II. Materials and Methods

(1) Materials

Titanium (IV) n-butoxide, Yb₂O₃ (99.99%) and Er₂O₃ (99.99%) were purchased from Sigma-Aldrich. HNO₃ (70%), Na₂SiF₆ (98.0%) and NH₄HF₂ (95.0%) were purchased from Duksan Chemicals. CO(NH₂)₂ (99.0%)

Corresponding author: jskim@uos.ac.kr

and Y_2O_3 (99.99%) were procured from Samchun Chemicals and Daejung Chemicals, respectively. All chemicals were used as-received and all experiments were performed in deionized water.

(2) Synthesis of phosphor and TiO_2 -coated phosphor

Up-conversion phosphor samples were prepared with a simple solution combustion method. In a typical synthesis, the oxide powders of Y_2O_3 (99.99%), Yb_2O_3 (99.99%) and Er_2O_3 (99.99%) in a molar ratio of 0.90: 0.09: 0.01 were dissolved in HNO₃ (70%) under vigorous stirring at 120 °Cto form an oxide solution. Simultaneously, another aqueous solution of Na₂SiF₆ (98.0%), and NH₄HF₂ (95.0%) was prepared on a hot plate under magnetic stirring at 80 °C. The two solutions were mixed on a magnetic stirring hot plate followed by addition of $CO(NH_2)_2$ (99.0%) as fuel at 70 °C for 2 h. Then, the obtained solution was placed in a closed crucible for combustion reaction at 650 °C for 5 minutes in a muffle furnace at a heating rate of 5 °C/min. The up-conversion phosphor powders were further annealed for 2 h at 580 °C.

The NaYF₄:(Yb³⁺, Er³⁺) phosphor powders were coated with TiO₂ by means of a sol-gel processing technique. The samples for investigating the photocatalytic activity of TiO₂-coated NaYF₄:(Yb³⁺, Er³⁺) phosphor were prepared using various concentrations of titanium (IV) n-butoxide (TBOT). The concentrations ranging from 0.064 M to 0.632 M TBOT, 50 ml ethanol and 10 ml water were mixed and stirred magnetically at 50 °C for 2 h to obtain TiO₂ sol. Then, the NaYF₄:(Yb³⁺, Er³⁺) phosphor powders were dispersed in the TiO₂ sol under magnetic stirring for 30 minutes to allow uniform coating, filtered and washed with de-ionized water. The TiO₂-coated NaYF₄:(Yb³⁺, Er³⁺) phosphor particles were dried in an electric oven at 100 °C for 12 h and annealed in an electric furnace at a heating rate of 5 °C/min for 1 h at 450 °C.

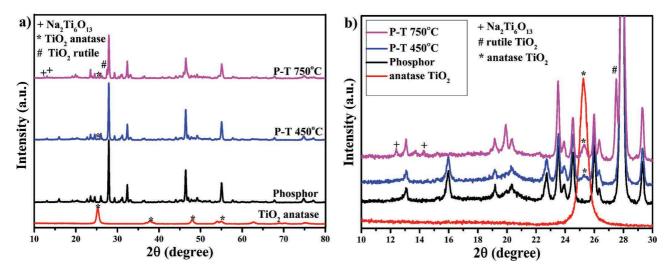
(3) Characterization

X-ray diffraction (XRD) patterns were obtained on a Bruker D8-Advance diffractometer using Cu-Ka radiation at 20 ranges from 10° to 80°. Field emission scanning electron microscopy (FE-SEM, FEI Nova Nano SEM 200) was used to observe the morphology of the up-conversion phosphor particles. Transmission electron microscopy (TEM, FEI Technai F20 G²) was used to observe the surface morphology of TiO2-coated NaYF₄:(Yb³⁺, Er³⁺) phosphor samples. The up-conversion photoluminescence (PL) spectra was analyzed on a fluorescence spectrophotometer (F-4500, Hitachi) operating at 400 V, with excitation slit of 1 nm and emission slit of 10 nm. For PL measurement, 200 mg of photocatalyst powders were placed in a sample holder and irradiated using a 40 mW IR dot laser lamp of 980 nm (Laserlab). The excitation wavelength was fixed at 980 nm for all photocatalyst samples. An UV-Vis spectrophotometer (UV-1601, Shimadzu) was used to measure the absorption spectrum of MB solutions after visible light irradiation with TiO_{2} -coated NaYF₄:(Yb³⁺, Er³⁺) phosphor samples.

(4) Photocatalytic experiments

The photocatalytic activity was investigated by measuring the photodegradation of an aqueous MB solution under

visible light irradiation. The maximum absorbance of MB solution was observed at 664 nm with the range of 1.00 ~ 1.20. Nanocrystalline TiO₂-coated NaYF₄:(Yb³⁺, Er³⁺) phosphor powders (700 mg) were dispersed in 100 mL 5ppm-MB solution and irradiated with a visible light lamp (200 W clear/soft tone, IL Kwang Co., Ltd. Korea). Photocatalyst powders were in suspension under magnetic stirring at 300 rpm throughout the experiment. The photocatalyst samples dispersed in MB solution were placed in darkness for 30 minutes under magnetic stirring to reach chemical equilibrium before irradiation with visible light. An UV-light cut-off lens (Kenko zeta UV L41, Japan) was inserted below the visible light lamp to filter ultraviolet wavelengths below 410 nm. At 1-hour intervals, 1 mL solution was pipetted from the reaction mixture. The samples were centrifuged and placed in quartz cuvettes for absorption measurements.


III. Results and Discussion

(1) Characterization of TiO_2 -coated phosphor

Fig. 1(a) shows XRD patterns for two samples of TiO₂coated NaYF₄:(Yb³⁺, Er³⁺) phosphor particles (coated with 0.106 M TBOT and annealed at 450 or 750 °C), NaYF4:(Yb³⁺, Er³⁺) phosphor and pure TiO₂ (prepared from 0.106 M TBOT precursor). Fig. 1(b) shows enlarged XRD patterns of Fig. 1(a) from 10° to 30° of 2θ . The peaks in the pure NaYF4:(Yb3+, Er3+) phosphor correspond well with cubic phase NaYF₄ (JCPDS 04-008-3253) and the peaks in the TiO₂ to anatase phase (JCPDS 04–006–9240). The TiO₂ anatase peak at 24.5° was observed in the TiO2-coated NaYF4:(Yb3+, Er3+) phosphor and its intensity increased with increasing annealing temperature from 450 to 750 °C. In the TiO₂-coated NaYF₄:(Yb³⁺, Er³⁺) phosphor heat-treated at 750 °C, peak suppression occurred at 16° and 22.5°, whilst new peaks appeared at 12° and 14.2°. TiO₂ rutile phase at 27.5° is observed at 750 °C due to anatase transformation. The peaks at 12° and 14.2° for the sample at 750 °C can be assigned to Na₂Ti₆O₁₃ intermetallic compound which is formed at temperatures above 700 °C ¹³.

Fig. 2(a) shows an FE-SEM image of NaYF₄:(Yb³⁺, Er³⁺) phosphor. The sample consists of clusters of regular polygon-shaped particles with average size of 100 nm. Fig. 2(b) shows an FE-SEM image of TiO₂-coated NaYF₄:(Yb³⁺, Er³⁺). Nanocrystalline TiO₂ particles are formed as coating layers or in clusters around the NaYF₄:(Yb³⁺, Er³⁺) particles.

Fig. 3(a) shows the TEM image of TiO₂-coated NaYF₄: (Yb³⁺, Er³⁺) up-conversion phosphor particles. The image shows two distinct morphologies, small particles of 10 nm and large polygonal-like particles of about 100 nm. Energy-dispersive spectroscopy (EDS) confirmed that the bright-contrast small particles are TiO₂. The dark-contrast large particles were confirmed to be NaYF₄:(Yb³⁺, Er³⁺) phosphor. Fig. 3(b) shows EDS spectra obtained from the edge of NaYF₄:(Yb³⁺, Er³⁺) phosphor material while the EDS spectra of a TiO₂ particle are shown in Fig. 3(c). The EDS analysis shows the presence of sodium (Na), fluorine (F), oxygen (O), ytterbium (Yb), erbium (Er) and titanium (Ti) peaks, confirming the presence of NaYF₄:(Yb³⁺, Er³⁺) and TiO₂.

Fig. 1: (a) XRD patterns of NaYF₄:(Yb³⁺, Er³⁺)/TiO₂ (P-T), phosphor NaYF₄:(Yb³⁺, Er³⁺) and pure TiO₂. (b) Enlarged XRD patterns of the samples in the range of $10-30^{\circ}$ of 2θ .

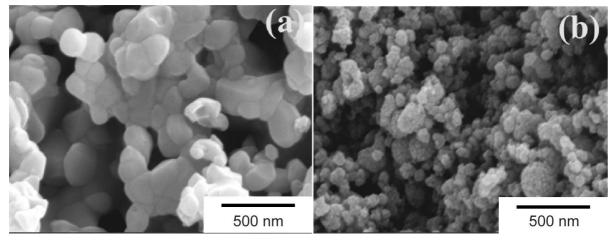


Fig. 2: FE-SEM images of (a) NaYF₄:(Yb³⁺, Er³⁺) and (b) TiO₂-coated NaYF₄:(Yb³⁺, Er³⁺) phosphor.

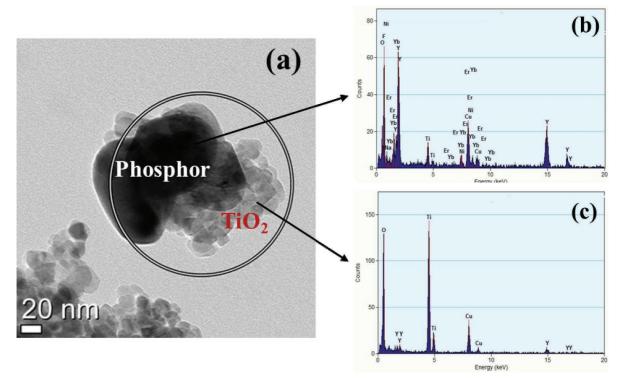
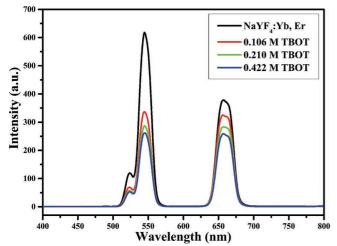



Fig. 3: (a) TEM image of TiO2-coated NaYF4:(Yb3+, Er3+) phosphor and (b-c) corresponding EDS spectra.

Fig. 4 shows photoluminescence spectra of TiO₂-coated NaYF₄:(Yb³⁺, Er³⁺) phosphor with different concentrations of TBOT. The spectra for the NaYF₄:(Yb³⁺, Er³⁺) phosphor were superimposed with those of the TiO₂coated NaYF4:(Yb³⁺,Er³⁺), which are labelled with respective TBOT coating concentration. The distinct emission peaks are located at 523, 544 and 655 nm. These results also correspond to the findings of other researchers; where 523 and 544 nm peaks are assigned to Er³⁺ transition from ${}^{2}H_{11/2}$ and ${}^{4}S_{3/2}$ to ${}^{4}I_{15/2}$ respectively and 655 nm is assigned to ${}^{4}F_{9/2}$ to ${}^{4}I_{15/2}$ transition ⁸. The luminescence spectra for sol-gel TiO₂-coated NaYF₄:(Yb³⁺, Er³⁺) powder show similar peak positions at 523, 544 and 655 nm but with reduced emission intensities. The TiO_2 coating on up-conversion phosphor tends to act as a barrier to excitation and emission of phosphor, thus the intensity of photoluminescence emission peaks decreased with the increasing concentration of TBOT above 0.106 M.

Fig. 4: Up-conversion photoluminescence spectra of NaYF₄:(Yb³⁺, Er³⁺) with different concentrations of TBOT.

(2) Photocatalytic activity of TiO_2 -coated phosphor

Fig. 5 shows the absorbance spectra of the MB solution mixed with TiO₂ coated NaYF₄:(Yb³⁺, Er³⁺) phosphor powders with 0.106 M TBOT under visible-light irradiation for 14 h. The photodegradation of the MB solution was observed through reduction in absorbance peak intensities at 664 nm with irradiation time. This decrease in the absorption peak intensities at 664 nm was used to assess the photocatalytic activity. Fig. 6 shows variations of maximum absorbance intensities for MB solutions sensitized using TiO₂-coated NaYF₄:(Yb³⁺, Er³⁺) under visible-light irradiation as irradiation time. Different TiO₂ coatings on phosphor were achieved by varying the concentration of TBOT. The data obtained from pure NaYF₄:(Yb³⁺, Er³⁺) phosphor and TiO₂ samples were superimposed for comparison in the photocatalytic activity. The absorbance peaks for pure phosphor NaYF4:(Yb3+, Er3+) and TiO2 samples remained constant, showing that no photodegradation of the aqueous MB solution occurred during irradiation with visible light. The decrease in absorbance of aqueous MB solution with irradiation time indicates the progression of MB photocatalytic activity in TiO₂ coated NaYF₄:(Yb³⁺, Er³⁺) phosphor powders. This photocatalytic reaction in TiO₂coated NaYF₄:(Yb³⁺,Er³⁺) phosphor with visible-light irradiation is attributed to free sodium ions which diffuse from the NaYF₄:(Yb³⁺,Er³⁺) phosphor matrix to the TiO₂ layer along the interface of phosphor to form sodium titanate intermetallic compound, of the general formula Na₂Ti_{2n}O_{2n+1} with an absorption band (~2.81 eV) in the visible light region ¹⁴. A similar visible-light photocatalytic reaction was observed with TiO₂-coated (Ca,Sr)O-Al₂O₃:Eu³⁺ phosphor composites in which the intermetallic compounds of (Ca,Sr)TiO₃ were formed at the interface between phosphors and TiO₂^{6, 15}.

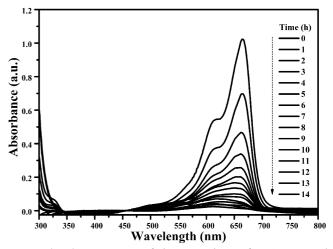


Fig. 5: Absorbance spectra of the MB solution for TiO₂-coated NaYF4:(Yb3+, Er3+) with 0.106 M TBOT under visible light irradiation.

The variation of MB absorbance peaks with TBOT concentration in NaYF₄:(Yb³⁺, Er³⁺) phosphor samples was attributed to the different coating thickness of the TiO₂ layer. It was found that a sufficient TiO₂ coating layer would permit photo-excitation of the TiO₂-coated phosphor composites to produce enough electron-hole pairs for photodegradation of the MB dye solutions. Therefore, 0.106 M TBOT coating on NaYF₄:(Yb³⁺, Er³⁺) phosphor was the appropriate TBOT concentration for fast MB photodegradation as shown in Fig. 6. On the other hand, excessively thick TiO₂ coatings may cause the photo-excitation of TiO2-coated phosphors to decrease by hindering the light absorption of phosphors. Hence, 0.422 M TBOT coating resulted in lower photocatalytic activity due to blocking of light by TiO₂ particles, resulting in low photoluminescence intensity of this sample in Fig. 4.

(3) Photocatalytic mechanism of TiO_2 -coated phosphor

The possible energy band structure for the NaYF₄: (Yb^{3+}, Er^{3+}) ; Na₂Ti_{2n}O_{2n+1} and TiO₂ is shown in the schematic diagram in Fig. 7. However, the role of NaYF₄: (Yb^{3+}, Er^{3+}) phosphor particles is to offer a stable crystalline support for the TiO₂ photocatalyst and provides photoluminescence. In addition to that, the NaYF₄: (Yb^{3+}, Er^{3+}) phosphor particles are a source of Na⁺ ions, which diffuse to form intermetallic compound sodium titanate during crystallization of TiO₂ coating. This sodium titanate at the interface of the NaYF₄: (Yb^{3+}, Er^{3+}) phosphor particle and TiO₂ coating is thought to be photoreactive to visible light. In addition to that, differ-

ent fermi levels in NaYF₄:(Yb³⁺, Er³⁺) phosphor, intermetallic compound Na₂Ti_{2n}O_{2n+1} and TiO₂ might have induced energy band bending at the junction and extend the absorption band of TiO₂ towards the visible light region. Thus, light photons emitted from the phosphors, promote the photo-generation of electron-hole pairs in TiO₂-coated NaYF₄:(Yb³⁺, Er³⁺) phosphor through intermetallic compound and enhance the photocatalytic activity of TiO₂ even under visible light irradiation.

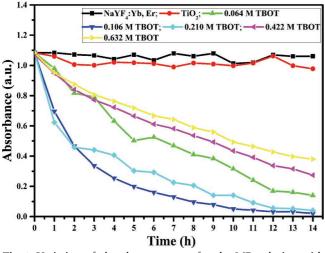


Fig. 6: Variation of absorbance spectra for the MB solution with TiO2-coated NaYF4:(Yb3+, Er3+) phosphor under visible light irradiation.

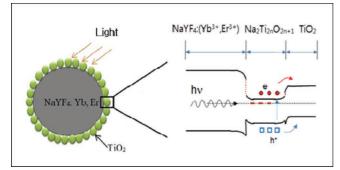


Fig. 7: Schematic energy band structure at the interfaces of $NaYF_4:(Yb^{3+}, Er^{3+}), Na_2Ti_{2n}O_{2n+1} and TiO_2.$

IV. Conclusions

TiO₂-coated NaYF₄:(Yb³⁺, Er³⁺) phosphor synthesized with a simple solution combustion and sol-gel method. TiO₂-coated NaYF₄:(Yb³⁺, Er³⁺) phosphor materials were capable of the photodegradation of aqueous methylene blue (MB) solutions under visible light irradiation. The highest MB photodegradation occurred for the TiO₂-coated NaYF₄:(Yb³⁺, Er³⁺) phosphor (coated with 0.106 M titanium (IV) n-butoxide (TBOT)). The visible-light photocatalytic reaction of TiO₂-coated NaYF₄:(Yb³⁺, Er³⁺) phosphor may result in the formation of intermetallic compound, Na₂Ti_{2n}O_{2n+1}, which induces TiO₂ to be photo-reactive under visible-light irradiation. The visible-light photocatalysis of TiO₂-coated up-conversion phosphor is plausibly applicable for environmental remediation.

Acknowledgements

This work was supported by the 2016 Research Fund of the University of Seoul.

References

- ¹ Yadav, H.M., Kolekar, T.V, Pawar, S.H., Kim, J.-S.: Enhanced photocatalytic inactivation of bacteria on Fe-containing TiO₂ nanoparticles under fluorescent light, *J. Mater. Sci. Mater. Med.*, 27, 57, (2016).
- ² Yadav, H.M. *et al.*: Enhanced visible light photocatalytic activity of Cr³⁺-doped anatase TiO₂ nanoparticles synthesized by sol-gel method, *J. Mater. Sci. Mater. Electron.*, **27**, 526–534, (2015).
- ³ Lin, W., Cheng, H., Ming, J., Yu, Y., Zhao, F.: Deactivation of Ni/TiO₂ catalyst in the hydrogenation of nitrobenzene in water and improvement in its stability by coating a layer of hydrophobic carbon, *J. Catal.*, **291**, 149–154, (2012).
- ⁴ Lafond, V., Mutin, P.H., Vioux, A.: Non-hydrolytic sol-gel routes based on alkyl halide elimination: toward better mixed oxide catalysts and new supports application to the preparation of a SiO₂-TiO₂ epoxidation catalyst, *J. Mol. Catal. A: Chem.*, 182-183, 81-88, (2002).
- ⁵ Pan, J.H., Sun, D.D., Lee, W.I.: Preparation of periodically organized mesoporous bicomponent TiO₂ and SnO₂-based thin films by controlling the hydrolytic kinetics of inorganic precursors during EISA process, *Mater. Lett.*, **65**, 2836–2840, (2011).
- ⁶ Kim, J.S., Sung, H.J., Kim, B.J.: Photocatalytic characteristics for the nanocrystalline TiO₂ on the Ag-doped CaAl₂O₄:(Eu,Nd) phosphor, *Appl. Surf. Sci.*, **334**, 151–156, (2015).
- ⁷ Kim, J.-S., Kim, S.-W., Jung, S.-C.: Photocatalytic reaction characteristics of the titanium dioxide supported on the long phosphorescent phosphor by a low pressure chemical vapor deposition, *J. Nanosci. Nanotechnol.*, 14, 7751-7755, (2014).
- ⁸ Chen, D. *et al.*: Dopant-induced phase transition: A new strategy of synthesizing hexagonal upconversion NaYF₄ at low temperature, *Chem. Commun. (Camb).*, **47**, 5801–5803, (2011).
- ⁹ Tamrakar, R.K., Bisen, D.P., Upadhyay, K., Sahu, I.P.: Upconversion and colour tunability of Gd₂O₃:Er³⁺ phosphor prepared by combustion synthesis method, *J. Alloy. Compd.*, 655, 423-432, (2016).
- ¹⁰ Gonell, F. *et al.*: Photon up-conversion with lanthanide doped oxide particles for solar H₂ generation, *J. Phys. Chem. C*, **118**, 140505212111008, (2014).
- ¹¹ Liu, Y. et al.: Coupling effects of Au-decorated core-shell β-NaYF₄:Er/Yb@SiO₂ microprisms in dye-sensitized solar cells: plasmon resonance versus upconversion, *Electrochim.* Acta, 180, 394-400, (2015).
- ¹² Bednarkiewicz, A., Wawrzynczyk, D., Nyk, M., Samoć, M.: Tuning red-green-white up-conversion color in nano NaYF₄:Er/Yb phosphor, *J. Rare Earth.*, **29**, 1152–1156, (2011).
- ¹³ Sauvet, A.-L., Baliteau, S., Lopez, C., Fabry, P.: Synthesis and characterization of sodium titanates Na₂Ti₃O₇ and Na₂Ti₆O₁₃, *J. Solid State Chem.*, **177**, 4508–4515, (2004).
- ¹⁴ Bavykin, D.V., Walsh, F.C.: Kinetics of alkali metal ion exchange into nanotubular and nanofibrous titanates, *J. Phys. Chem. C*, **111**, 14644-14651, (2007).
- ¹⁵ Yoon, J.-H., Kim, J.-S.: Investigation of photocatalytic reaction for the titanium dioxide-phosphor composite, *Ionics* (*Kiel*), **16**, 131-135, (2010).