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Abstract
Knowledge of the morphology of ceramic grains and pores facilitates understanding of the sintering process. The

real intergrain contact surfaces, as highly irregular objects, can only be adequately described by using fractal mod-
els. Both micro- and nanostructured shapes of grains and intergranular contacts can be easily reconstructed by using
fractal analysis/modeling. Several variations of Coble’s two-sphere model are reviewed in this paper. Further, the in-
tergranular capacity model has been reexamined from the perspective of intergranular fractal formations. The area
of grains’ surface is calculated using fractal correction and fractal dimension. This results in a more precise numerical
interpretation of the parameters and related properties of electronic ceramics. In particular, the role of the dielectric
constant, being correlated with the fractal nature of intergranular morphology, causes corrections to the Heywang
model and Curie-Weiss law. In order to obtain an equivalent circuit model, an intergranular contacts model is deter-
mined and implemented for characterization of the electrical properties of barium titanate. The improved material
prognosis electronic properties can be given on the basis of micro-/nanostructure fractal relations. Considering the
obtained results, new frontiers are established for deeper and higher level of microelectronic integration of electronic
circuits, which practically results in a new framework for fractal electronics.
Keywords: Ceramics, Coble’s model, Heywang model, Curie-Weiss law

I. Introduction
The sintering process is characterized by extreme com-

plexity due to the simultaneous and successive actions of
elementary mechanisms. Generally speaking, it is very dif-
ficult to follow all the actions going on and provide a qual-
itative or quantitative description of these 1 – 9. Ceramic
grain contacts are essential for understanding the complex
electrodynamic properties of sintered materials. The mi-
crostructures of sintered BaTiO3 ceramics, observed with
the SEM method, are characteristic examples of complex
shape geometry that cannot be easily described or mod-
eled. So, one possible approach to describing contact phe-
nomena is the establishment of grain contact models. De-
tailed research into the intergranular contacts of BaTiO3
ceramics intergranular contacts has shown that they have
the greatest influence on electrical properties of the en-
tire sample 3, 4. The intergranular contacts are formed dur-
ing the sintering process. When two particles of barium-
titanate powder to be sintered form a contact, interatom-
ic forces start forming a particle neck in the contact area.
When the powder aggregate is sintered and the necks be-
tween powder particles are formed, the aggregate may in-
crease in density. Transport mechanisms contribute to the
neck growth and densification. A common driving force
is the reduction in the surface area and, thus, the reduc-
tion of surface free energy of the system. Throughout the
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process, the neck begins to grow and this process is con-
trolled by various diffusion mechanisms (lattice diffusion,
grain boundary diffusion, etc.) with the rates determined
by the total flux of atoms arriving at the neck. The objec-
tive of this paper is to review the models 10 – 23 of three or
more spherical grains in contact, as the basis for calculation
of the values of possible contact areas in a given geometry
configuration. This approach proceeds in two directions.
First, the neck growth in the time domain is simulated by
combining results for contact surface values with the ki-
netics of forming three or more contact areas. Second, the
model of three or more grains in contact is used for estab-
lishing an equivalent electrical model of such a grain as-
sociation. It is shown that a BaTiO3 ceramic sample can
be modeled as the impedance containing two capacitors,
an inductor and a resistor 7. As the ceramic sample con-
sists of numerous grains organized in clusters of differ-
ent sizes, it could be supposed that each cluster and even
each intergranular contact within the cluster exhibits sim-
ilar behavior. The dominant contribution to the equiva-
lent impedance within a wide frequency range comes from
the capacitance 7. So, any intergranular contact can be ob-
served as an intergranular microcapacitor. Based on these
considerations, equivalent electrical models of the three-
and four-grain clusters are presented. All these models and
electrical contact surface processes are based on the ap-
plication of computer modeling and simulation methods.
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The extreme complexity of the sintering process neces-
sitates the study of this process on the basis of different
sintering models. Most of the sintering models have used
the two-sphere model as the simplest model for study-
ing elementary mechanisms responsible for the progress
of the sintering process. Such an idealization of the geom-
etry of the sintering particles enables very detailed study of
physical processes acting in the contact area. In this paper,
Coble‘s two sphere model 1 is used as a basis for develop-
ing a new two-ellipsoid model. The ellipsoidal geometry
gives a more appropriate representation of an average grain
then the spherical one. The relations connecting geomet-
ric parameters of the ellipsoidal model to consolidation pa-
rameters – sintering time and temperature – are reformu-
lated. For better understanding of intergranular processes,
Coble‘s model was further generalized for other possible
geometric shapes (sphere-polyhedron, polyhedron-poly-
hedron). Then, the results of a new model are compared to
those obtained from Coble‘s two-sphere model. All calcu-
lations are valid for the initial stage of the sintering process.

In consideration of the important role of the fractal ge-
ometry interaction, in the domain of intergranular con-
tacts morphology, a wide investigation front was opened
to establish the following crucial facts: What is a measure
of fractality of ceramic grain contacts? How does this frac-
tality influence microelectronics mechanisms? What is the
resulting energetic balance? (since a part of energy is spent
on fractal obstacles), etc. Finally, the equivalent impedance
intergranular models are considered.

II. The Sphere-Sphere Model

In order to explain the contact between two grains dur-
ing a sintering process and better understand the elec-
trical properties of BaTiO3 ceramics, we shall start off
with Coble’s model 1, Fig. 1. In the process of the diffu-
sion in initial-stage sintering, two grains, approximated by
spheres, penetrate each other slightly. The volume that fills
the intersection of the spheres (the distance between the
centers is smaller than the sum of the two radii) transforms
into a neck (a kind of the collar circumscribing the contact
area), with the following assumptions: (i) x << a, (ii) the
volume conservation, (iii) the center-to-center approach,
and (iv) the straight-line neck geometry. For the model
system topology shown in Fig. 1 24, the following equa-
tions were derived from the volume conservation princi-
ple in the contact area:

(1)

where q1, q2 are the spherical cap heights (forming the
common volume of the spheres’ intersection), X1 is the
radius of the common circle, X2 is the radius of the neck
formed by diffusion in the initial stage of sintering, R1 and
R2 are the radii of the two spheres.

Fig. 1: Coble’s two-sphere model.

In the general case, the time-dependent neck radius can
be written in the form, X2 = g(t; T, A) where T is the sin-
tering temperature, and A is the vector of the system pa-
rameters

A = {a, D, Q, c, Tm, X, dB}

where a is the particle radius, D and Q are the vectors of
diffusion coefficients and activation energies of transport
mechanisms, respectively, c the boundary free energy, Tm
themelting temperature, X the atom volume, and dB the
effective grain boundary thickness.

Densification and neck formation are the results of the
actions of two possible transport mechanisms 6:
1. Lattice diffusion from the grain boundary,
2. Grain boundary diffusion,
3. Viscous flow (from the grain’s bulk),
4. Grain surface diffusion,
5. Grain surface evaporation,
6. Gas diffusion;

It is known that the polyhedral crystal, in equilibrium
with the surroundings, would assume a shape with the
minimum surface free energy 3. This principle was trans-
lated into the following extended proportion 4, known as
the “equilibrium form”:
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where ci is the specific surface energy of the i-th face of
the polyhedral crystal, ri is the central distance to the i-th
face, vi is the molecular volume of the solid, P is the vapor
pressure of the polyhedral crystal, and P∞ is the vapor
pressure of a crystal of infinite dimensions.

In their extended model, the same authors also gave the
equations for the lattice and boundary diffusion of the
following type:
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where DL and DB are the lattice and grain-boundary dif-
fusion coefficients, respectively.

Equations (2) and (3) are fundamental in modeling the
“geometry” of intergrain sintering and the neck forma-
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tion. Two spheres with radii R1 and R2, the common in-
tersection circle area is given by
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The next step towards a more realistic Coble model is to
consider the neck profile update as shown in Fig. 2. The
cross-section with the rotation symmetry plane reveals the
radius r external neck border rather than a linear segment.
In the case R1 = R2, the graphical interpretation of the
cross-section of the common lens-like zone, the “neck”
and the relative position of both are shown in Fig. 3 (left
side), while on the right side, all mentioned elements are
shown in a 3D – perspective projection.

On the other hand, Fig. 4 displays the functional depen-
dence of r(R, h), where R is the radius of spheres (which
are equal), and h is the thickness of half a lens.

Fig. 2: The “realistic” two-sphere model..

Fig. 3: Planar sections and 3D elements of the “realistic” two-sphere
model.

Fig. 4: The radius r from Fig. 3 as a function of R = R1 = R2, and h,
the height of a “half length” of a lens-like common zone.

III. Spherical to Ellipsoidal Model Transformation
The spherical model can be successfully converted into

the ellipsoidal one by applying an affine transformation
F:S→E of the form
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where a, b and c are scaling parameters introduced in order
to generate the ellipsoidal semi-axes ai, bi and ci (i = 1,2),
and x, y and z are local variables. The main properties
of this transformation are its non-singularity (a, b, c ≠ 0)
and continuity which induces topological invariance. This
means that the ratio-conserving property of the transfor-
mation (4) is of essential importance for the derivation of
the ellipsoidal model.

Ellipsoid-ellipsoid model

The grains of the BaTiO3 ceramic sample can be approx-
imated by ellipsoids scattered throughout the material‘s
volume. These ellipsoids can be seen as a model of grains
in contact. Actually, owing to sintering pressure and the
sintering process, one grain partly penetrates into another,
forming a small contact area that can be pretty accurately
approximated by the intersection of ellipsoids E1 and E2.
Our aim is to determine the value of this area as the func-
tion of the center distance of the grains δ0

E (Fig. 5).

Fig. 5: a) Ellipsoidal grain approximation, b) neck growth of two
ellipsoidal grains in the sintering process.

Assuming that the ellipsoidal axes are pairwise parallel
and lengths of the axes are proportional by the factor k,
two ellipsoids E1 and E2, having centers at C1 = (x1, y1,
z1) and C2= (x2, y2, z2) from 3, being coaxial (having par-
allel axes) with semi-axes ai, bi, ci (i = 1, 2) provided that ai
> bi > ci, and a2/a1=b2/b1=c2/c1=k (k > 0), are considered
(Fig. 5a). Suppose that E1 and E2 approximate two neigh-
boring grains in the sintered BaTiO3 ceramics (Fig. 5b).
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A straightforward calculation indicates that the distance
between C1 and C2 at the beginning of sintering (sinter-
ing time = 0) is given by
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where (cosa, cosb, cosc) is the unit vector of C1C2-
segment. The difference between the grain center dis-
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process during the elapsed time d(s) is given by

     ( ) ( )= − = +
⎡

⎣
⎢

⎤

⎦
⎥E

o
E E

oX
k R

1
4

2
2

1
2

The value of d(s) contains information about dynamics of
the intergrain neck formation. From this formula, we can
derive the neck radius via the proportionality factor k as
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where R1 is the radius of the spherical grain corresponding
to ellipsoidal grain E1.

IV. The Modeling Procedure
For modeling of spherical grains the polyhedron-poly-

hedron model system is used.
The approximated ellipsoidal surface of a grain is repre-

sented by series of interconnected adjacent polygons with
C0 continuity 13 (Fig. 6).

Fig. 6: 3D model of three spherical grains in contact during a. initial,
b. middle and c. final moment of simulation.

Also, the belonging function is used for the representa-
tion of the grain. It is the real function f(x, y, z) represent-
ing the grain as follows: an arbitrary point M(x1, y1, z1)
belongs to the interior of grain if f(x1, y1, z1) ≥ 0, and it is
out of grain if f(x1, y1, z1) < 0.

Two grains are fixed in space so that they can touch or
intersect each other, and the third one is approached along
the determined direction. We have observed the process
from the moment of contact between a mobile grain and
one of the static grains until the moment of the assimilation
of the grains – the pore between them disappears.

In course of the simulation, the area of each contact sur-
face, the distance between each pair of grains as well as
the length of the pore formed between grains have been
calculated.

The edge polygons were not considered owing to their
insignificant influence on the value of the total area (less
than 10-4 for the approximation of a grain with 106 poly-
gons) as well as the considerable impact on the simulation
rate.

V. Ellipsoidal Contact Model
To the best of the author’s knowledge, all known inter-

grain contact models of sintered ceramics use the spherical
approximations of grains. Contrary to this, the observa-
tions based on a review of the SEM photographs lead to
the conclusion that majority of the BaTiO3 ceramic grains
can be better approximated by ellipsoids than by spheres.
So, it is interesting to consider a pair of grains in contact as
two ellipsoids partly penetrating each other. In this way,
we can extend those elements of Coble’s model concern-
ing the contact zone area 14.

Consider two ellipsoids E1 and E2, having centers at C1
= (x1, y1, z1) and C2= (x2, y2, z2) from 3, being coaxial
(having parallel axes) with semi-axes ai, bi, ci (i = 1, 2)
provided that ai > bi> ci, and a2/a1=b2/b1=c2/c1=k (k>0).
And suppose that E1 and E2 approximate two neighboring
grains in the sintered BaTiO3-ceramics, so that E1 ∩ E2 =
(xp, yp, zp). A straightforward calculation indicates that
the distance δ0

E between C1 and C2 in the beginning of
sintering (sintering time s = 0) is given above.

By the formula (1) X2 = √2X1, where X1 is given by
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where d is a distance between the centers of the spheres and
R2 ≥R1. If we denote q = R1/R2 then the neck radius will
be given by
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where s = (d – R2)/R1. Formula (5) gives the relationship
between the neck radius and distance of the spheres’ cen-
ters d normalized to the unit interval. The corresponding
diagram is given in Fig. 7.

Fig. 7: Diagram of X2 via (d – R2)/R1 and q.
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VI. Sphere-Polyhedron Model
Suppose that a ceramic grain has an approximately spher-

ical shape but the roughness of the surface justifies replac-
ing the spherical model with the polyhedral one. For the
sake of describing a constructive method of obtaining such
a polyhedron, we will consider a specific subdivision pro-
cedure, which is illustrated in Fig. 8. A sphere is replaced
by a regular polyhedron inscribed in the sphere. Among
the five regular polyhedra, icosahedron is a good choice
for two reasons. First, it is the best approximation of the
sphere; second, all its faces are triangles which simplifies
the subdivision procedure 6, 17.

Fig. 8: Icosahedron subdivision geometry.

Consider two grains, one approximated by an n-stage
polyhedron (inscribed into a sphere having radius R1), an-
other by a sphere (radius = R2). Suppose that these two
spheres penetrate each other as in Fig. 2, for the same spac-
ing q1 =q2 = q, and consequently the same common circle
radius X1= X2=X. Now, we need to evaluate the volume of
the “cap” of n-stage polyhedron contained within the R2
- sphere. For this purpose, we will use the cubic function
that indicates the increase in the volume of the cap with
the height q and cap circle radius X: Vcap = lq(3X2 + q2)/6.
After n subdivision iterations, an approximate formula for
the common volume value reads 17

(6)

where Vn = V0

[
1 + k + kb · 1 - (kb)n-1

1 - kb

]
is a polyhedron vol-

ume after n-steps, b = α
1 + kα and a = 4·π·(3 -

√
5) - 5

5·k - 1.
During the initial sintering process stage, two grains

penetrate each other and form a neck. The diameter of the
neck is determined by the volume conservation law.

VII. Polyhedron - Polyhedron Model
Aside from a sphere, a ceramic grain can be approximated

by a polyhedron. The typical approach uses the intersec-

tion of an octahedron O, and a cube C (Fig. 9) in a way that
the vertices of the octahedron are the cube’s side centers.
In this case, the octahedron is fully inscribed in the cube
(Fig. 9, leftmost), and O ∩ C = O. Also, the octahedron O
can be considered as having its original size, or k × O, with
k = 1. If the multiplication factor increases up to 1.35, the
intersection becomes a truncated octahedron (Fig. 9, mid-
dle). For k = 1,5, the cuboctahedron is obtained as an inter-
section (Fig. 9, right). Further increasing k yields a truncat-
ed cube and finally the cube.

Fig. 9: Grain’s approximations by the octahedron-cube intersec-
tion.

The main geometric parameter influencing the energetic
behavior of the grain is the area-volume ratio, A/V. Pro-
viding the side length of each polyhedron is a, the A/V ra-
tio is given in Table 1.

Fig. 10: Different grain approximations.

The diagram integrating the data from Table 1 is given in
Fig. 10.

Table 1: Octahedron-cube intersection A/V ratio.

A V A/V ∼A/V for a = 1

octahedron
√

3a2
√

2a3/12 6
√

6/a 14.6969

truncated
octahedron

(
6 + 12

√
3
)

a2 8
√

2a3 3
√

2
(

1 + 2
√

3
)

8a

2.36745

cuboctahedron
(

6 + 2
√

3
)

a2 5
3

√
2a3 3

√
2

(
3 +

√
3
)

5a

4.01528

truncated cube 2
(

6 + 6
√

2 +
√

3
)

a2 1
3

(
21 + 14

√
2
)

a3 6
7

(
3 - 2

√
2
) (

6 + 6
√

2 +
√

3
)

2.38496

cube 6a2 a3 6 6
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The importance of this model is having a simple tool for
the manipulation and fast evaluation whenever it is nec-
essary to process a huge number of grains. It can also be
used as a starting point for developing the fractal model of
intergrain configuration. Here, we start with two polyhe-
dra, Pm and Pn obtained as an m - stage or n - stage output
of the procedure described above (Fig. 10). So, we can use
formula (5) with R1 and R2 as the corresponding radii of
the circumscribed spheres. The neck radius value is depen-
dent on the parameters Vn, R1, R2, q, k, a and b. With this
procedure, the geometry of two polyhedral grains in con-
tact can be successfully solved.

VIII. The Heywang Model and the Curie-Weiss Law
The most widely accepted model to explain PTCR effect

is the Heywang model 25, which describes the resistance-
temperature behavior based on a double Schottky barrier.
This barrier is caused by deep acceptor states trapped on
the grain surface. The height of the barrier at the grain
boundaries is described as:


 0

2

08
( )

( )
T

e n
T N
S

gb D

= (7)

where Ns is the acceptor state density; Nd is the charge
carrier density; T is the temperature; eo is the permittivity
of free space, and er is the relative permittivity of the grain
boundary region.

Thus the resistivity R is given by:




S R
e
kT

= 0
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where R0 is a constant, k is the Boltzmann constant, and
e is the electron charge. According to the Curie-Weiss
Law 26:

 r cC T T= − / ( ) (9)

where C is the Curie-Weiss constant, T is the temperature,
and Tc is the Curie temperature. Above the Curie point,
the resistivity increases quickly because of the variation of
er. Thus, the PTCR effect is directly related to the grain
boundary. According to Eq. 1, Ns, Nd, and er can greatly
affect the height of the barrier. As will be indicated further
on, all above formulas (7), (8) and (9) are amenable to cor-
rections due to the presence of the fractal nature compo-
nent within the ceramics microstructure.

Fig. 11: Ceramic grains approximated by polyhedra in the sintering
process.

IX. Temperature Impact
Arguing about the crystal surface’s “natural roughness”

as a collection of macroscopic steps on the arbitrary sec-
tion surface of the crystal plane section, Frenkel 27 put for-

ward that this roughness does not coincide with the crystal
faces’ atomic roughness, with small surface energy, which
can occur as the consequence of thermal fluctuations at
high temperatures. This temperature consideration illus-
trates the impact on dynamic processes within the ceramic
body. Such impact generates a motion inside the ceramic
crystals in the Fermi gas form, containing different par-
ticles such as electrons (Bloch wave), atoms, atomic nu-
clei, etc. 28. In essence, this motion has a Brownian charac-
ter and necessitates the introduction of the third fractality
factor – the factor of movements, aM (0 < aM < 1). Our hy-
pothesis 29 is that the working temperature of BaTiO3 ce-
ramics must be influenced by these three fractality factors,
correcting the “theoretic” temperature as

T Tf = , (10)

where a is a fractal corrective factor. As will be shown
below, a is composed of three “sub-factors”: the already
mentioned aM as well as the other two, designated as and
ap, the role of which will be further explained in more de-
tail in the last section titled “Inner fractality and a-correc-
tions”. The functional relationship will be expressed as

   = ( )Φ s P M, , (11)

The argument for this expectation resides in the fact that
the geometrically irregular motion of numerous particles
has to release the extra energy into the system. In other
words, the fractality of the system represented by the three
factors as, ap, and aM should increase the overall energy of
the system, and this increment must be subtracted from
the input energy which is in fact an input thermal energy
denoted by T. In other words, Tf = T - DT and since it fol-
lows from (10) that

  
T

T
T T

T
f D

,

it gives 0 < a = 1-DT/T < 1.
The nature of the function in (11) is currently unknown,

but at the first moment, the linear approximation will suf-
fice,

      s P M s P Mu v w, , ,    

whereu, v, w < 0 are real coefficients satisfyingu + v + w = 1.
If we reconsider formula (9), it gives us a hint of alpha

correction embodied in the corrective coefficient a0. On
the other hand, in formula (10) there is another corrective
coefficient, this time correcting the temperature. To find a
connection between a0 and a, the Curie-Weiss law should
be considered, giving temperature dependence of the di-
electric constants of BaTiO3 ceramic grain’s contact zone

 r
c

S

T
C

T T
( ) =

− (12)

where Ts is the Curie temperature and Cc is the Curie con-
stant. If er is corrected to gain the value a0er, then from (10)
and (12) it follows a0er = Cc/(aT - Ts). After the elimina-
tion of the Curie constant Cc using (12), the following is
obtained:
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which are the formulas and a0 with temperature T. Fig. 12
visualizes the relationship between a and a0, where the
natural range for both a and a0, are deliberately extended
for better insight.

Fig. 12: The dependence of a on T and a0 according to (13).

More generally, every expression that contains a function
of temperature, say F(T), if it is differentiable, may be
expanded to the Taylor series as

F T F T T
k

F T Tk k k

k

( ) = −( ) = ( ) −( )( )

=
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∑Δ Δ1
1

0 !

Hence, there are many important formulas associated
with the Heywang model containing temperature as the
main variable.

X. Intergranular Impedance Model
Taking into account that the intergrain contact surface is

the area where processes, in the electro-ceramic material’s
structural complex grain-contact-grain, occur at the elec-
tronic level, it can be presented as an electrical equivalent
network consisting of three RC branches as noted in the
introduction (Fig. 13).

Fig. 13: Equivalent electrical model of contacted grains.

All this allowed us to consider the BaTiO3 ceramic sam-
ple as a system with a huge number of mutually contact-
ed grains forming clusters. For each of them, it is possi-
ble to establish the equivalent electrical model and, for de-
fined set of input parameters, using symbolic analysis, ob-
tain the frequency diagram. However, the simple RC is
not sufficient to explain the resonant behavior of a ceram-
ic sample. In order to calculate the equivalent impedance

for a wide frequency range, the equivalent electrical circuit
for a ceramic material can be introduced as an equivalent
impedance Ze, containing two capacitances C and Ce, an
inductance L and a resistance R. Therefore it is more like-
ly that the equivalent circuit model of contacted grains has
parallel and series branches as presented in Fig. 14.

Fig. 14: Two grains in contact forming a microcapacitor.

Two grains (Fig. 13), partly penetrating each other, and
the corresponding microcapacitor model, formed by the
contact area is shown therein. This area has a fractal struc-
ture, which means that an effective size of S is greater than
if it was smooth. A striking example of Le Méhauté et al.
concerning lithium batteries is given in Mandelbrot 10. For
this reason, we will focus our next section on methods that
can help identify the type of fractal typical of BaTiO3 ce-
ramics.

Now, consider an intergranular contact impedance as
shown in Fig. 14. Here, Ce is the main capacity compo-
nent while C, R and L are parasitic capacitance, resistance
and inductance respectively, without a-correction, which
means that intergranular geometry is considered as being
flat. It is not difficult to see that the equivalent impedance,
with a-correction included should be
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In this manner, except for Ce, C, L, R and f, Ze also
includes the corrective factor a0 and, thus, it also depends
on a as is evident from the graphs in Fig. 15.

Fig. 15: The level surfaces of intergranular impendence Ze given by
(9) as a function of 0 < a < 1, 0 < R < 2, T =80 °C and f = 1(8)80
and for ce = 0.1; c = 0.01; L = 0.001 (left); ce = 0.01; R = 1; L = 0.001
(right); Physical units are neglected.
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Fig. 16: a. Four grains of BaTiO3 ceramics approximated by el-
lipsoids. b. Tetrahedral configuration of associated intergranular
impedances. c. After triangle-to-star transformation.

Fig. 17: Left. The equivalent circuit for the four-grain contacts.
Right. Cube of impedances.

If more than two grains are in contact, and this is the most
common case in the bulk of ceramics, the situation be-
comes much more complicated. Let the simple case of four
grains in contact be considered (Fig. 16a). If these grains
have four contacts, then the configuration of intergranular
impedances will have the form of a tetrahedron (Fig. 16b).
The equivalent impedance between the grains G1 and G4
is the same as between the points A and B on the tetra-
hedral scheme. The triangles Z2Z3Z4 and Z3Z5Z6 can be
transformed into the corresponding “stars” ZaZbZc and
ZpZqZr (Fig. 16c) with
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where R′= Z1 + Z2 + Z3 and R″= Z3 + Z5 + Z6. The equiv-
alent circuit is shown in Fig. 17, and the final calculation
gives
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Suppose all impedances are equal to some Z. Then, ac-

cording to (15), ZAB = 5
3 Z. If the parasite components L, R

and C are neglected, and if 1/Zi = jxa0Ce = j2pf a0Ce, all i,
then
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This formula reveals that the overall capacity in the case
of tetrahedral configuration is smaller than the single-con-
tact capacity, CAB = (3/5)a0Ce.

Similar calculations in the case of eight grains in contact,
arranged in a cubic manner (Fig. 17, right), gives
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and therefore, CAB = (6/5)a0Ce, so the capacity of the cu-
bic cluster is larger than the capacity of a single contact.

XI. Combined Grain Approximations
In some cases, a polyhedral approximation is acceptable,

as well. In this case a polyhedron can be constructed as a
3D graph the nodes of which are points on the ellipsoidal
surface. So, we can consider an approximate model of a
group of two grains in three ways: 1. ellipsoid - ellipsoid
(EE) contact; 2. ellipsoid - polyhedron (EP) and 3. ellip-
soid - grain (EG) contact (Fig. 18).

Fig. 18: EE-EP-EG-group of BaTiO3 ceramics grains and a fractal
structure of the contact zone.

Here, it is interesting to determine what the distribution
of the intergranular contacts looks like and, secondly, what
is a more general formula for evaluating the size of all con-
tact patches in the volume unit of BaTiO3 ceramics, and
the last, but the most complex, is the question of the na-
ture of intergrain layers and their relationship with micro-
capacitor distribution. Of course, it must be kept in mind
that all the parameters mentioned are the functions of sin-
tering process parameters (t, p and s).

In the light of the geometric method explained above, we
can extend this approach from the case of ee intersections
to the case of ep and eg intersections. In fact, the value of
the contact area of two grains area is given by A =

∫
sdr

where S is a mathematical surface that will be described
soon and dr is a usual differential element of the surface.
For all three models, a surface S can be characterized in the
unique way based on the intersection of the ellipsoidal sur-
face with: 1. Another ellipsoidal surface, 2. A polyhedron
surface and 3. A real grain surface that can be expressed in
terms of fractal functions. Even in the case that the ana-
lytical method could be applied (EE), there is no use for
this because the method of the evaluation of the above in-
tegral must be a numerical one. Consequently, it is reason-
able for the method of two surface intersection to be nu-
merical, as well. In all cases, it is sufficient to find discrete
points lying along the intersection line. In the case of EE
intersection, the analytical solution of the intersection is
to be discretized, which reduces the problem in the case of
EP intersection. The method is, as follows.
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A polyhedron P can be regarded as a union of vertices
V and sides r. The set of vertices is divided by ellipsoidal
surface E into two groups: V1 - vertices inside of E includ-
ing the surface; V2 - vertices lying outside of E. These two
groups of vertices divide the set of sides into three groups:
r = r1 ∩ r2 ∩ r3, where r1 are sides with their two endpoints
in E, r3 are sides outside of E and r2 contains all sides that
connect vertices from V1 and vertices from V2. Each side
from r2 contains a unique point being characterized by the
unique parameter t, t∈ (0, 1), so that (1-t)p1 + t p2 is a point
on the ellipsoid. If the ellipsoid has semi-axes a, b, c and
p1 = (x1, y1, z1), p2 = (x2, y2, z2), parameter t must obey
the quadratic equation At2 + Bt + C = 0, where
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What we want to get is the value of the size of a part of
the surface of P that is immersed into ellipsoid 10. Let this
surface be denoted by p, then |p| – the value we want – can
be approximated by the union of triangular elements. The
size of each triangle is given by 1/2 of the modulus of the
vector product of its sides.

As far as the EG contact is concerned, the calculation is a
little bit complex mainly due to the fact that a fractal grain
is defined by recursive functions (a fractal structure of such
a contact is shown in magnified detail in Fig. 18). But us-
ing the binary tree algorithm and a convex hull property of
fractal algorithms, the intersection of one meridian line in
fractal grain with an ellipsoid is not difficult to find. Actu-
ally, let S0 be a starting set in 3D space for the recursive
procedure of making auto composition of the Hutchin-
son contractive operator. Then, a sequence of sets has been
produced. Being a union of smaller copies of the attractor-
let from the previous stage, the new attractorlet obeys the
convex hull property, enabling the pinpointing of its inter-
section within any compact set in 3D. Once the fractal in-
tersection contour is determined, its area can be estimated
using the suitable numerical method.

A surface S that appears in the integral formula is the
union of all intergrain contact surfaces in a prescribed vol-
ume V of the BaTiO3 ceramic sample. This surface can be
defined using the characteristic function of some set A
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Let G be a contact zone between any two grains. Define
the following function

F x y z x y zG
T( , , ) ( ), .= = [ ] ∈ r r R3

It is clear that F is a discontinued function defined over
the volume of the sample being considered. Let ∇F be the
usual gradient of the function F with the convention that in
the point of discontinuity r0, where the line of pre-gradient
fraction goes into infinity, it will be taken ∇F(r0) = +∞.
It is easy to see that the set defined by ∂G = {r : |∇F(r)|> 1}
represents the surface of A contact zone (see 10). In order

to extend DG on all contact surfaces, it is enough to replace
the function F defined above with F1

F x y z Gi
i I

1( , , ) ( )=
∈
∏ r

where I is a subset of natural numbers broad enough to
number all contact zones. The corresponding surface is
S = ∂G1 defined by

G F1 1 1= ∇ >{ }r r: ( )

Therefore, the total contact area is given by

A d dGi
i IVS

= =
∈
∏∫∫   ( )r

XII. Non-Contact Intergranular Capacities
If two grains are close to each other but not in direct

contact, then neighboring crystal surfaces pair up to form
micro-capacitors. The polarization effect causes two close
grains to have opposite electric charges and each flat facet
from the grain’s one half interacts with several similar
facets of grain’s other closest half (Fig. 19).

Fig. 19: Two neighboring grains and a micro-capacitor.

Since each facet (S1 or S2) belongs to a single plane and no
plane contains both facets (if it does, no capacitor exists),
then there is a pair of planes intersecting each other form-
ing an acute angle, say u. Let the distance between centers
of the facets be d. In this way kind of “slanted” capacitor is
formed. A cross-section showing such a capacitor can be
seen in Fig. 20 (left). Note that much of the edge effect of
fringing fields should be neglected.

The most appropriate model though is the model of two
planes situated as shown in Fig. 20 (right) in a cylindrical
coordinate system (φ, r, z), where the intersection of planes
coincides with z-axes.

Fig. 20: Electrostatic field configuration for two slanted micro-
surfaces and an approximating mathematical model in cylindrical
coordinates.
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Consider Poisson’s equation for electrostatic fields in
cylindrical coordinates
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(16)

with boundary conditions φ = 0, V = 0, φ = u, V = V0;
Assuming the geometry of two nonparallel planes, we

see that potential V has to be constant along radial and

axial coordinates r and z, which implies ∂V
∂ r = ∂V

∂ z = 0.

That simplifies (16) to the partial differential equation

(17)

The solution of (17) is

(18)

where c1 and c2 are constants regarding the angular coor-
dinate. From the boundary conditions, one gets c2 = 0, and

c1 = V0
α + 1

2
qV
e ur2, which, being substituted in (18), gives
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Of course, e = e0er, as it is known e0 = 8.85×10-12 F/m.
Since E = DV, and since the gradient in cylindrical coor-

dinates evaluates as
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from which one has

Now, the electric flux density D = eE is then

where

The choice of limits for z is made to simplify the expres-
sion without the loss of generality. Otherwise, the radial
coordinate r depends on the distance of the facet element
from the intersection line, and it is taken to be R. Although
the surface of the facet is approximated by a rectangular
element of the area Ds = Dz Dr, it follows from the familiar
formula
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V V
Q
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−

=
0

and

XIII. Contact Intergranular Capacities
If two grains are in firm contact, they may form capaci-

tance zones having fractal-shaped electrodes. In fact, the
fractal dimensions of the grains’ surfaces will be repro-
duced onto the contact zones, forming capacitor plates
with identical fractal dimensions. This situation is shown
in Fig. 22.

Fig. 21: Solutions (19) of Poisson’s equation (2) for voltages 5 to
40 V.

Fig. 22: Contact capacitor zone has fractal morphology.

The contact zone can be approximated by a classic par-
allel-plates capacitor with distance d and surface area A so
that it has the capacity C0 = eA

d , where e is the local per-
mittivity constant. Such a capacitor undergoes the fractal
transformation using an iterated procedure driven by Iter-
ated Function System {w1, w2, w3 …, wn}, where
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is a contractive affine transformation in the plane of the
cross-orthogonal section of the capacitor. The values ak,
ck, dk, ek, fk are determined in such a way corresponding
to the adequate form of fractal initiator-generator pair. In
the example in the picture, the initiator is the double line,
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parallel to each at a distance d, and of length L. The parallel
lines are the plates of the capacitor seen from the side.
Suppose that the area of the surface is A = L×a, where a is
the width of the plates, and that a keeps constant. Then the
capacity C0 has the value

C a
L
d0 = 

If we set n = 3, this means that there are only three con-
tractive mappings. This further means that there are three
matrices A1, A2, A3, each of which is “responsible” for
mapping the whole double line into the three double seg-
ments (Fig. 23). In this manner, each longitude transforms
into new values, bounded by the factors of matrix norms
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In other words, the length L of the capacitor will trans-
form into three new lengths: ||A1||L, ||A2||L, and ||A3||L.
At the same time, the distance d undergoes the same trans-
formation. In fact, each new capacitor has more or less the
same capacity
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i.e., C1 ≅C0, C2 ≅C0, C3 ≅C0. Since these capacitors are
connected in parallel scheme, the total capacity after the
first iteration will be C(1) ≅ 3C0. Further iteration will
yield 32 new capacitors so that we will get C(2) ≅ 32C0.
Consequently, after N iterations the approximate value of
capacity will be C(N) ≅ 3NC0. In the case that the Iterated
Function System has n contractive mappings, the whole
formula will be C(N, n) ≅nNC0.

To the local fractality embodied in intergranular con-
tacts, the stereological distribution of the contacts
throughout the ceramics bulk is to be added. Although
these may seem stochastic, it is not so. Some amount of
regularity, inherited from a crystallite structure, appears.
Some possible basic models are shown in the Fig, 24.

Fig: 23: Modeling intergranular capacitor by Iterated Function Sys-
tems and equivalent capacity schemes.

XIV. Inner Fractality and a-Corrections
Note that these fractal dimensions of typical R are just

slightly above the topological dimensions of the surface,
DT = 2. The difference DHf-DT = DHf-2 is thereby sup-
posed to be responsible for affection to a part of ferroelec-
tric phenomena in barium titanate ceramics that cannot be

explained by purely Euclidean geometry of the grain sur-
faces. It is convenient to introduce a normalized surface
fractality parameter as, thus satisfying the inequality

1 2 2 0 1−( ) −{ } < < −{ } < <   min max ,DH DHf S f

which ensures the unit range
0 1< <S

Also, BaTiO3 ceramic is a porous material that cor-
responds to lacunar fractal models. It brings in a new
phenomenon. Namely, the solidification of porous and
“spongy” materials increases the overall fractal dimen-
sion from (theoretically) 2 to full solid 3. In other words,
fractal dimension of a porous material, DHP satisfies
2 < DHP < 3. It causes another correction factor aP = DT -
DHP, where DT = 3 is dimension of the space and DHP
is corresponding fractal dimension of a porous configura-
tion. Therefore, 0 < aP < 1.

Fig. 24: Possible 3D model of intergranular capacities organized
according to the Sierpinski pyramid (top) and Menger sponge (be-
low).

The dimensionless quantities as and aP shall be called
“geometric fractality factors”. We suggest the existence of
the third factor aM caused by the influence of disorder
movement of ferroelectric particles, i.e. the factor of fractal
movements.

As it is known, there is a mobile “cloud” of particles in
motion within semiconductors (and metals as well) con-
sisting of electrons in atoms with large atomic numbers,
nucleons in heavy atomic nuclei, and gases consisting of
quasi-particles with half-integral spin. This is called Fermi
gas and obeys Fermi-Dirac statistics.

The classic theory of Fermi gas assumes that (i) The in-
teractions between the electrons are irrelevant and can be
ignored; (ii) The electrons move in a constant potential and
we can ignore everything about the structure of the mate-
rial; (iii) The crystal comprises a fixed background of N
identical positively charged nuclei and N electrons, which
can move freely inside the crystal without seeing any of the
nuclei (monovalent case); and (vi) Coulomb interactions
are negligible because the system is neutral overall.

Now, the real dynamics of the Fermi gas impose the ne-
cessity of including the factor of fractal movements aM,
that makes the third factor, next to the geometric ones as
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and aP. Since the Fermi gas particles have dynamics sim-
ilar to the 3D Brownian one, aM should be a derivate of
the Hausdorff fractal dimension DHM of a Brownian 3D
space-filling curve. It is obvious that 1 ≤DHM ≤ 3. The
lower limit, min DHM = 1, is imposed by the continuity
of a particle’s trajectory. The upper limit, max DHM = 3, in
turn, is the maximum of trajectory complexity in 3D space.
It is reasonable to normalize quantity aM by taking

M MDH= −( )1
2

1

which gives
0 1< <M

In this way, three independent dimensionless fractality
factors as, aP and aM are introduced. These are real num-
bers from the open interval (0, 1).

Now, our hypothesis is that the working temperature of
BaTiO3 ceramics must be influenced by these three fractal-
ity factors, necessitating correction of the “theoretic” tem-
perature T, to get the new “real” temperature Tf, which is
temperature affected by the inner fractality of the materi-
al Tf = T-DT. Obviously, Tf ≤T with equality of no fractal
structure of S, P or M type is present.

Now, by setting a =
Tf
T = 1–DT

T , one has

T Tf = ,

where a depends on all three alpha-components, so
   = ( )Φ s P M, ,

Now, by the Curie-Weiss law, the relative permittivity
will be given by
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where Cc is the Curie constant.
So, formula (5) can be modified as follows
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XV. Conclusions
The aim of this paper is to review some intergrain mod-

els of the ceramic sintered materials including the gener-
alizations of Coble’s two-sphere intergrain contact mod-
el. In the initial sintering phase, two grains, approximated
by ellipsoids or polyhedrons, form a specific contact zone
that is responsible for the dielectric characteristics of Ba-
TiO3 ceramics. In this way, we develop ellipsoid-ellipsoid,
sphere-polyhedron and polyhedron-polyhedron models,
using the usual Euclidean geometry. In addition, we offer
a fractal extension of all those models using the fractal rep-
resentation of a grain. This representation is obtained as
a stochastic subdivision of a regular polyhedron inscribed
in a Coble’s sphere. The subdivision mechanism is flexi-
ble enough to provide possibilities for changing the frac-
tal dimension of the grain – the real number that conveys
information on irregularities on the grain’s surfaces. The
average value of the fractal dimension of BaTiO3 ceramics
grains has been estimated in order to accurately reproduce
a model of the grain. In the case of the observed models, the

normal grain growth is independent of the initial pressing
pressure so that the results prove the conjecture that the
dielectric constant has a direct correlation with consoli-
dation parameters (pressing pressure, sintering tempera-
ture and time). With the simultaneous analysis of the rela-
tive dielectric constant, the grain size and the capacitance
distribution, optimal intervals for technological parame-
ters – lower sintering temperatures and higher pressing
pressures – can be obtained.

Understanding the electrical properties of barium-ti-
tanate materials is important for modern device applica-
tions and presents a challenge for simulation. In this study,
the model of the intergranular impedance is established
using the equivalent electrical scheme characterized by a
corresponding frequency. According to the microstruc-
tures we have obtained for BaTiO3, sometimes doped with
rare earth additives, the global impedance of a barium-ti-
tanate ceramic sample contains both a resistor and capacity
components. The resistor and capacity components were
presented as a “sum” of many clusters of micro-resistors
and micro-capacitors connected in the tetrahedral lattice.
The positions of neighboring grains for the four-grain
cluster have been defined and, based on these, the tetrahe-
dral scheme of the mutual electrical influence of BaTiO3
grains has been established. Fractal geometry has been
used to describe the complexity of the spatial distribu-
tion of BaTiO3 grains. The model of impedances between
the clusters of the ceramics grains has been presented and
calculations of micro-capacitance generated in the grain
contacts of BaTiO3 have been conducted. By controlling
the shapes and numbers of contact surfaces on the level
of the entire BaTiO3 ceramic sample, the structural prop-
erties of this ceramic can be controlled, with the aim of
correlation between the material’s electronic properties
and corresponding microstructure.

High precision of the applied fractal nature mathemat-
ics opens up new perspectives for the better evaluation
of intergranular capacity as well as the understanding of
the spatial distribution of micro-impedances with the fur-
ther breakthroughs in the field of miniaturization and in-
tegration of electronic circuits. With this, we can pro-
ceed towards better component and device packing be-
cause the possibilities of semiconductor technology are al-
ready limited. Presented experimental research and theo-
retical work is a part of the extended investigations in the
area of material structure analysis and the fractal nature
domain, which is important for more precise contact sur-
face in the energy storage area and in materials consolida-
tion for battery systems. These results confirm the shapes,
grains and reconstruction possibilities of microstructure
constituents with the application of Brownian motion par-
ticles, through long-term scientific research on the fractal
analysis of electronic materials. This is the original con-
tribution to the basic electrochemical thermodynamic pa-
rameters area with the introduction of the a, fractal cor-
rection function, based on three correction parameters aS,
aP and aM, as electrochemistry area functions, especially
with regard to energy storage aspects and creating a new
approach towards intergranular capacity. This offers a sol-
id base for the future procedure and further application,
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in order to create new perspectives and solutions for ad-
vanced miniaturization, electronic parameter multi-level
integration, materials, components and circuits (especial-
ly C, R, L) characteristics as well as better component and
electronic circuit packaging.

All of these are of huge importance in many respects. One
of these are the new and alternative energy sources. They
are also very important with regard to establishing new
frontiers in miniaturization. It is a new experimental-the-
oretical approach framework for a new model line devel-
oped by the authors. It could be considered as the electro-
chemistry area of fractal microelectronics. In this way, we
have confirmed the new fractal frontiers in the area of alter-
native energy sources as a precise and powerful approach.

From the other side, this paper presents a systematic ap-
proach towards creating a method for wind motion/tur-
bulences and prediction of influence of a fractal nature.
One of the most important wind parameters is fractal anal-
ysis of different terrain roughness profiles.

One of the main goals is a contribution to industrial pro-
duction via the design concept of inventive ideas for fi-
nal products with best performance. Through this method
and results, we are opening up new frontiers and tech-
nological processes in fractal microelectronics, especially
specific intergranular relations within grain surface coat-
ings. This paves the way towards fractal nature micro-
electronics of intergranular thin films, and also opens a
new “window” towards correlation between “big” and
“small”, like the roughness of the Earth’s relief vs. micro-
scopic microstructures irregularities.
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structure, Proc. of the IX World Round Table Conference on
Sintering” held in Belgrade:Advanced Science and Technology
of Sintering, edited by Stojanović et al., Kluwer Academic/
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22 Mitić, V., Paunović, V., Mancic, D., Kocic, Lj.,. Zivković, Lj.,
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Zivković, Lj., Electrical characterization and impedance re-
sponse of lanthanum doped barium titanate ceramics, Science
of Sintering, 40 [3], 283 – 294, (2008).

24 Chen, J.H. Johnson, P.F.: Computer simulation of initial stage
sintering in two-dimensional particulate systems, P.E. Russell,
Ed., Microbeam Analysis- 405 – 409, 1989,

25 W. Heywang, H. Thomann, Electronic Ceramics, London and
New York, 1991.

26 Pontes, F.M., Pontes, D.S.L., Leite, E.R., Longo, E., Chiqui-
to, A.J., Pizani, P.S., Varela, J.A.: Electrical conduction mech-
anism and phase transition studies using dielectric properties
and Raman spectroscopy in ferroelectric Pb0.76Ca0.24TiO3
thin films, J. App. Phy., 94, [11], 7256. (2003).

27 Frenkel, Y.I.: On the surface crawling particles in crystals and
the natural roughness of natural faces, JETP, 16, [1], (1948).



378 Journal of Ceramic Science and Technology —V.V. Mitic et al. Vol. 7, No. 4
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