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Abstract
Two approaches towards modeling damage in a brittle material caused by thermomechanical loading are presented.

Both rely on microcrack growth, in the first case in a homogeneous matrix, in the second one at grain boundaries. Two-
scale simulations e.g. of thermal shocks applied to single-phase or layered structures are performed in connection with
the finite element method. Damage and crack patterns are predicted just as quantities like residual strength or critical
temperature jumps.
Keywords: Thermal shock, damage simulations, multiscale models, effective material properties

I. Introduction
Being brittle by nature, ceramics can withstand large

compressive stresses. As soon as they are exposed to ten-
sile stress, however, failure is observed with comparative-
ly small loads. This aspect is usually taken into account in
the design of mechanically loaded structures made of ce-
ramic materials. Thermal loading, on the other hand, in-
duces residual stresses, being both compressive and tensile
in order to satisfy the global mechanical equilibrium. Par-
ticularly thermal shock in terms of fast and intense surface
heating or cooling is a source of large local stress, where
predominantly tensile contributions lead to cracking and
local failure. In many cases the rupture is not even visi-
ble, the damaged zone being underneath the surface at the
point of maximum stress. Further loading may then lead
to a sudden unexpected fracture of the whole structure.

On the microscale, small cracks are predominantly re-
sponsible for the onset and growth of damaged zones.
Typically, lengths of relevant microcracks are in a range
of a few to some tens of microns, thus having the same
order of magnitude as the average grain size of a poly-
crystalline ceramic. Crack growth can be trans- or inter-
granular, in principle, and exhibit interactions with the mi-
crostructure. It is observed at any intensity of loading, be-
ing denoted undercritical if the crack tip loading is below
the material-inherent crack resistance or fracture tough-
ness, respectively. Corrosive media play an important role
in the undercritical crack growth regime, being responsi-
ble for a gradual degradation and fatigue of the ceramic
structure 1, 2.

As thermal shock is in the focus of interest, under-
critical microcrack growth is not relevant, however. In-
duced residual stresses are usually large enough to provide
enough energy for critical crack growth, where the crack

* Corresponding author: gundlach@uni-kassel.de

tip loading equals the fracture toughness of the material.
The latter is supposed to increase during an early stage of
crack growth due to interactions with the microstructure,
thus providing the possibility of stable crack extension.
Just a few thermal shock cycles are commonly sufficient
to induce severe local damage and to nucleate a macro-
scopic crack.

In this paper, models are presented describing the process
of microcrack initiation and growth within a continuum
mechanical framework. In contrast to fracture mechani-
cal approaches, where a crack is introduced as a pair of
free surfaces, microcrack growth is described by an inter-
nal state variable, representing the accumulated crack sur-
faces related to the edge lengths of representative volume
elements (RVE). The evolution of this internal or damage
variable is governed by fracture mechanical relations of
crack length and local stress. The influence of the cracks on
macroscopic properties, e.g. the elastic constants, is tak-
en into account by means of homogenization of the defect
phase in the RVE, thus bridging the two scales.

Two different models are employed on the microscale,
an analytical one accounting for cracks in a homoge-
neous matrix, and a numerical one where grain bound-
aries and their delamination are considered. The finite
element method is applied to solve thermomechanical
boundary value problems. The theoretical background is
briefly outlined, partly referring to previously published
work 3, 4. The focus of this paper is on the illustration of
the potential of the numerical methods in investigating
the degradation of e.g. refractory ceramics under thermo-
mechanical loading. A variety of results from numerical
simulation is thus presented, ranging from the growth of
macroscopic cracks to typical applications of single-phase
and layered refractory structures.
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II. Two-Scale Modeling and Implementation
The results presented in this work have been generat-

ed using a continuum damage approach for brittle ma-
terials 3 – 5. For this purpose, so-called cell models are
employed, incorporating either microcracks or cohesive
grain boundaries on a microscopic level. The overall con-
cepts of the solution procedures are illustrated in the sub-
sequent sections.

In general, the solution is sought for the thermomechan-
ical initial boundary value problem, on the macroscopic
scale with coordinates x m

i (cf. Fig. 1) governed by

rij,j = 0, (1)

qcḣ = k h,ii, (2)

with prescribed temperatures h, displacements ui, stress-
es ti and heat fluxes qi as suitable boundary conditions.
In Eq. (1) volume forces and inertia terms are neglected,
as are material anisotropies and gradations of local prop-
erties in Eq. (2). Furthermore, the analytical notation is
applied introducing indices for tensor coordinates, imply-
ing summation over double indices, and using the comma
convention for partial derivatives. The parameters of the
energy balance in Eq. (2), i.e. mass density q, specific heat
capacity c, and thermal conductivity k, are allowed to be
temperature-dependent. The stresses rij and temperatures
in equations (1) and (2) are quantities valid on the macro-
scopic level of the two-scale concept displayed in Fig. 1.
The microscopic level is defined by an RVE, size d3, which
is intended to describe the properties of the particular mi-
crostructure and is associated with a point P at a macro-
scopic coordinate x m

i . On the one hand, an RVE is claimed
to be sufficiently small in order to allow this punctual allo-
cation, on the other hand, it must be large compared to the
dimensions of the microstructural features: l << d << L. For
ceramics, an appropriate choice is d ≈ 0.1 mm 6. The het-
erogeneities taken into account in this study are either mi-
crocracks of arbitrary orientation or grain boundaries in
a polycrystal. Owing to these discontinuities, both stress-
es and strains are field variables, depending on the micro-
scopic scale xi. In the process of homogenization, these
fields are averaged within the respective volume V of the
RVE, to define the mechanical state at each macroscopic
point:

〈rij〉 = 1
V

∫

V

rij(xk) dV, 〈eij〉 = 1
V

∫

V

eij(xk) dV, (3)

where the brackets 〈⋅〉 indicate volume-averaged quantities
henceforth. A constitutive law in this thermomechanical
framework relates these macroscopic values according to
Hooke’s law including thermal expansion:

〈rij〉 = C*
ijkl(〈ekl〉 - adklhnn). (4)

Again, the expansion coefficient a varies with tempera-
ture and is assumed to be isotropic. The identity tensor
is denoted as dkl. Note that none of the thermal parame-
ters is affected by the existence or growth of microcracks.
In contrast to metals, the thermal conductivity of ceram-
ics is not sufficiently high to deflect the heat flux around
existing cracks. The lines of thermal flux rather penetrate
the crack slit unperturbed, the latter being very thin due

to the low crack resistance of the material. This behavior
which has been illustrated in numerical experiments 7 does
not depend on emerging displacement jumps until frac-
ture. Consequently, all crack-like heterogeneities are con-
sidered as thermally permeable. Hence, the heat equation
is fully decoupled from the momentum equation and the
effective stiffness tensor C *

i jkl represents the impact of po-
tential damage evolution solely. In the following, the used
cell models describing the effective constants and their de-
pendence on internal variables are explained.
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Fig. 1: Concept of homogenization within the thermomechanical
two-scale problem with boundary heat fluxes qi and tractions t̄i.
Spatially varying elastic constants Cijkl are replaced by effective

constants C*
ijkl for the whole RVE.

(1) Analytical cell model of microcrack growth
A more detailed motivation for this approach, based on

microcrack initiation and growth, has been introduced in
previous efforts 3. With the divergence theorem and the
mechanical equilibrium according to Eq. (1), macroscopic
stress can be rewritten as the surface integral

〈rij〉 = 1
V

∫

A

tixjdA, (5)

while the strain on macroscopic scale yields

〈eij〉 = 1
2V

∫

A

(uinj + ujni) dA, (6)

assuming small deformations. With regard to the void of
a crack and the surrounding material as discrete phases
with segregated stresses, strains, and material properties,
equation (6) can be reorganized (cf. 8) to

〈eij〉 = 〈eij〉M + 1
2V

∫

AC

(Δuinj + Δujni) dA = 〈eij〉M + 〈eij〉C. (7)

In this expression, the subscripts M and C denote aver-
aged strains valid for the matrix phase and the crack phase
AC, respectively. In contrast to the macroscopic strains,
the stresses consist only of those coming from the ma-
trix phase: 〈rij〉 = 〈rij〉M. Whereas the matrix deformations
〈eij〉M and stresses 〈rij〉 can be easily connected by a lin-
ear elastic law, the strains of the defect phase 〈eij〉C require
the integration of displacement jumps attributed to cracks.
They must be evaluated along the crack faces for certain
stress states. For this purpose, the following assumptions
are made:
i) The distribution of microcracks is considered as di-

lute, such that the impact of the interaction among ex-
isting cracks on strains and stresses is not included.
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ii) The stresses along the boundary of each RVE are pre-
scribed with a uniform value according to a Reuss ap-
proximation.

iii) All solutions are obtained in a hypothesized state of
plane stress.

With these preconventions, the displacement jumps are
determined with the Griffith crack solution

Δui (xi) = 4〈ri2〉
E

√
a2 - x2

1, (i = 1,2) (8)

with E denoting Young’s modulus of the matrix phase and
a the half crack length. Now, the integration in Eq. (7)
is feasible and the macroscopic strains of the crack phase
can be expressed by means of the macroscopic stresses.
In total, the elasticity law can be formulated with compli-
ance contributions coming from the matrix and the defect
phase:
⎡
⎢⎢⎣

〈e11〉
〈e22〉

2〈e12〉

⎤
⎥⎥⎦ =

1
E

⎡
⎢⎢⎢⎣

1 -v 0

-v 1 + fp
2 0

0 0 2(1 + v) + fp
2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

〈r11〉
〈r22〉
〈r12〉

⎤
⎥⎥⎦ (9)

The above relations are functions of f = 4a2

d2 , an internal

variable representing the square of the length of the micro-
crack in respect of the edge of the RVE. This parameter is
interpreted as crack density and used to quantify the local
damage. If f reaches unity, a crack has proceeded through
the entire volume element. In that case, the material is to-
tally damaged at that specific location.

The material law displayed in Eq. (9) is anisotropic due to
the additional compliance in the 〈e22〉 - component perpen-
dicular to the crack ligament. For that reason, it is not well-
suited as starting point of an isotropic material, where tiny
microcracks of equivalent lengths are distributed with ar-
bitrary orientation. An appropriate behaviour is derived,
considering a generic crack rotated by the angle a with re-
spect to the xi-coordinates, as shown in Fig. 2. Similar to
the linear splitting of deformations in Eq. (7), it is possible
to divide the effective compliance tensor in two parts:

C*,a
ijkl =

[
C -1

ijklM
+ C -1,a

ijklC

]-1
. (10)

The effective constants of the matrix phase are not affect-
ed by any rotation inasmuch as Hooke’s law is isotropic.
From Eq. (9) it is known that

C -1,a
2222C

=
f p
2E

,

C -1,a
1212C

= C -1,a
2121C

= C -1,a
1221C

= C -1,a
2112C

=
f p
8E

,
(11)

with all other components being zero. For the arbitrary-
oriented crack, these values are only valid in the rotated
coordinate system x a

i , however. To obtain C -1
i jklC

such that

cracks are oriented randomly, the entries must be trans-
formed to the xi-coordinates and integrated over any pos-
sible orientation a (cf. 9):

C -1
ijklC

= 1
2p

2p∫

0

QipQjqQkrQlsC
-1,a
pqrsC

da (12)

In this algorithm, Qij is an orthogonal tensor, transfer-
ring the components. If this is applied to the results in

Eq. (11), the outcome is an isotropic relation reflecting the
impact of the initial microcrack distribution:
⎡
⎢⎢⎢⎣

〈e11〉

〈e22〉

2〈e12〉

⎤
⎥⎥⎥⎦ =

1
E

⎡
⎢⎢⎢⎢⎢⎣

1 +
f

0
p

4 -v 0

-v 1 +
f

0
p

4 0

0 0 2(1 + v) +
f

0
p

2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

〈r11〉

〈r22〉

〈r12〉

⎤
⎥⎥⎥⎦ (13)

with

C -1
1111C

= C -1
2222C

=
f0p
4E

,

C -1
1212C

= C -1
2121C

= C -1
1221C

= C -1
2112C

=
f0p
8E

.
(14)

The above-outlined material law is the starting point of
every simulation with the initial damage of f0 = 4a2

0

d2 << 1, a0
being the initial microcrack length. Yet, isotropy within an
RVE is lost as soon as it comes to loads of a critical magni-
tude, initiating the propagation of microcracks which are
oriented perpendicular to local maximum principal stress-
es. Then, only these cracks are considered as crucial source
of failure since they will grow in the first place. According-
ly, the anisotropic law described in Eq. (9) is used hencefor-
ward. In that case, the effective constants are transformed
to the macroscopic coordinates x m

i by the appropriate ro-
tation law depending on the particular crack orientation.

α

xα
2

x2

xα
1

x1

Fig. 2: Arbitrarily oriented crack with reference coordinate system
xi and rotated coordinate system xa

i .

The criterion of microcrack evolution corresponds to an
R-curve-based Mode-I macrocrack law 10. Thus, it comes
to the extension of a microcrack in an RVE if

KI (r, a) > KR (Δa), (15)

where KI results from the largest positive principal stress
value of the macroscopic scale according to

KI = 〈rI〉
√

pa, (16)

and KR is evaluated from a function of the type

KR = K∞

(
1 -
(

1 - K0

K∞

)
e-g Δa

a0

)
. (17)

In the R-curve equation, K0 and K∞ denote the initial and
plateau values, respectively, Δa = a–a0 the crack propaga-
tion length, and g determines the gradient of the crack re-
sistance. From Eqs. (15) and (16) and the definition of the
damage parameter f, the evolution equation of the internal
variable is obtained in a compact form as

df = H
(

〈rI〉(dp)
1
2 f 1

4√
2KR(f, f0)

- 1

)
d f̂; d f̂ = const, (18)

where H is the Heaviside step function and d f̂ is a small
damage increment caused by crack growth. The stability
of a potential crack growth is provided whilst
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dKI

d f
> dKR

d f
. (19)

The outlined procedure is applied at every integration
point of the macroscopic finite element model. Once the
critical value f = 1 is reached, the effective stiffness is in-
stantly reduced to a small but finite value, to accommo-
date the event of rupture. Stresses are reduced, likewise at-
tributed to the local softening of the material.

The presumption of an increasing cracking resistance
with regard to defect extension as described in Eq. (17) is
one way to obtain stable microcrack growth and thus val-
ues 0 < f < 1. According to Eqs. (18) and (19), stable crack
growth is also possible if 〈rI〉 is reduced with constant KR
due to the reduction of local stiffness C *

i jkl associated with
the damage progress df. If there is no stable crack growth,
the model still works, however, the calculation of effective
anisotropic compliances will be omitted in that case.

(2) Two-scale FE model applying numerical homoge-
nization

In contrast to the analytical cell model, the displace-
ments and strains, respectively, are used to formulate the
boundary conditions to be imposed on the RVE, taking in-
to account intercrystalline microcrack growth. Thus, the
macro strains 〈eij〉 are transformed onto the cell model
boundary associated with the relation between strain and
displacement as

e11x1 = u1

e22x2 = u2

2e12 =
u2

x1
+

u1

x2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

0 ≥ x1, x2 ≥ d, (20)

in which ui is the displacement within the RVE where x1=d
and x2=d provide values at the boundaries. Hill’s condi-
tion postulating the equality of average and local strain
energy densities 11 is satisfied by these conditions. After
the boundary value problem of the cell model has been
solved, the macroscopic stress tensor 〈rij〉 and effective tan-
gent moduli C *

i jkl are obtained. Again, one very impor-
tant requirement of the scales separation is that the length
scale of the global macroscopic model L is much larger
than the dimension of the RVE d. The main ideas of related
homogenization methods have been established in 12 – 14

There are similar approaches, e.g. the multi-scale projec-
tion method 15 or the FE2-method 16, typically applied to
nonlinear problems with periodic boundary conditions at
large deformations. Trends and challenges of the multi-
scale homogenization methods are given in 17.

Fig. 3 depicts an example of such randomly distributed
grains in a domain with outer unit normals ni. The dimen-
sions of the RVE are d for the height and the length as well.
In brittle materials, cracks often are initiated and propa-
gate along the interfaces between the crystallites known
as grain boundaries (intercrystalline crack growth) 18. The
RVEs with randomly distributed grains are created auto-
matically based on parametric preprocessing. In contrast
to the previously presented model of crack distributions
in a homogeneous matrix (cf. section II(1)), they establish

the influence of the grain size in the simulations by intro-
ducing that quantity as scale parameter in the cohesive law.

n−
2

d
n−
1

n+
1

d

x 1

x 2

n+
2

Fig. 3: Representative volume element (cell model) representing a
polycrystalline material with unit normal vectors ni.

For the sake of simplicity, the separation process is as-
sumed to be based on bi-linear relationships between in-
terfacial traction and separation displacement. Different
constitutive laws have been used in cohesive zone mod-
els e.g. in Barenblatt’s atomic force attraction law 19, in
Dugdale’s model frequently used for computational frac-
ture research in ductile materials 20, in Needleman’s cubic
model 21, or Hillerborg’s bi-linear model 22.

In Fig. 4 the bi-linear cohesive zone law is displayed
which is used for the RVE modeling. This traction-sepa-
ration law allows for computation of the relationship be-
tween the interface restraining traction rR and the relative
grain boundary displacement d, finally leading to an inter-
crystalline crack if the critical displacement dc is attained.
With relation of the separation d to the average grain size,
the latter parameter is introduced in the simulations.

σR

δc
n

δ

Gc

δ 0
n

σ c
n

Fig. 4: Bi-linear cohesive law relating interface traction rR and
separation displacement d with loading and unloading paths.

Fig. 5 illustrates a grain boundary interface with all the
relevant quantities. Traction vectors tc and rR are related
by unit normals as
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n+/-
c · rR = t+/-

c (21)

The bi-linear cohesive law is described by the following
equation:

rR = r c
(i)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d(i)

d0
(i)

,

d0
(i) - d(i)

d(i) - d0
(i)

,

0 < d(i) < d0
(i)

d0
(i) < d(i) < d c

(i)

(22)

with index i = n, s for normal and shear separation. To
avoid conflicts with the tensorial index notation, brack-
ets (⋅) have been introduced. In the simulations, uncoupled
cohesive laws are applied, i.e. the normal and tangential
components of separation are not interacting. For the nor-
mal opening mode (Mode-I) there are two essential quan-
tities, the peak value of cohesive stress r c

n and the related
relative interfacial displacement d 0

n. The point (r c
n/d 0

n) is
the onset of strain softening followed by an instable state,
finally leading to crack growth at dc

n. In the case of shear
opening (Mode-II), the plot in Fig. 4 is qualitatively identi-
cal replacing indices n by s, where r c

s denotes the maximum
shear stress at d 0

s . Fig. 6 illustrates a combined normal and
shear separation with relative displacements dn and ds of
opposite boundaries of two grains.

Fig. 5: Cohesive restraining stress rR, respective unit normal vectors
n+/-

c , and opening displacement d between two grain boundaries at
an interface with pure normal separation.

Fig. 6: Normal and shear separation dn, ds between two grains with
local coordinate system xi.

From the J-integral enclosing the cohesive zone, the fol-
lowing relation can be derived (cf. 23)

Gc =
dc∫

0

rR (d) dd (23).

The area underneath the entire traction-separation curve
(Fig. 4) represents the cohesive energy density or critical

energy release rate Gc, i.e. the total energy per unit sur-
face required to completely separate the interface at a giv-
en point. Integrating the bilinear function according to
Eq. (22) and Fig. 4, Eq. (23) yields

Gc =
1
2

r c
(i)d

c
(i) = 2cc, (24)

where cc is the specific fracture surface energy originally
suggested by Griffith 24. Including the traction vector ac-
cording to Eq. (21), the cohesive law for both normal and
tangential separation can be written as[

tn

ts

]
=
[

Knn Kns

Ksn Kss

] [
dn

ds

]
(25)

where [K] is the stiffness matrix of the cohesive zone.
Eq. (25) neglects the coupling of normal and shear modes,
choosing Kns = Ksn = 0. For the cohesive zone modeling
between grains, three parameters have to be selected ap-
propriately, i.e. the stiffnesses K(i)(i), the critical displace-
ment d c

(i), and the critical energy release rate Gc.
Two stages are considered separately. Below the soften-

ing point d 0
(i) the material behaves linearly. As long as this

condition holds for all nodal points at any grain bound-
ary in a local RVE, the elastic properties are represented
by effective values C *

i jkl which are uniquely determined,
depending on the state of multiaxial stress. If degradation
(d > d 0

(i)) takes place at one or more locations within an
RVE, the simulation at the affected integration point of the
macroscopic model is continued, coupling the two-scale
FE models exchanging field quantities at each time step 4.

III. Numerical Examples and Discussion

First, results of the analytical cell model are presented. As
mentioned above, the microcracks are dilutely distribut-
ed in the RVE, initially exhibiting statistical orientations
leading to isotropic effective stiffness. Before structures
exposed to thermal shocks are dealt with, pure mechani-
cal loading is investigated to demonstrate the potential of
the modeling approach in simulating macroscopic crack
growth and crack paths.

In Fig. 7 a plate specimen is shown, being subject to ten-
sile loading. The notch, depicted on the left-hand side of
the plate fosters the initiation of microcrack growth and
thus the nucleation of a macroscopic crack. In the figures,
the red color indicates regions, within a numerical con-
text representing integration points, with the damage vari-
able being f = 1. Thus, the material has to be interpret-
ed as fully ruptured at that location. Fig. 7 illustrates the
evolution of the damage zone in three arbitrarily chosen
frames. The damaged region, being very narrow and re-
stricted to a small zone around the plane of symmetry, is
reminiscent of a crack, being initiated at the notch and,
driven by the tensile load, running straight through the
plate as expected. A detail of the finite element mesh at
the crack tip is shown for the right frame. Owing to the
remaining but small stiffness of the damage zone at f = 1,
an R-curve effect is obtained, leading to stable growth of
short cracks, where an increasing load r22 is required for
further crack advance, whereas longer cracks exhibit insta-
ble crack growth at constant external load.
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Fig. 7: Damage mechanical FE-simulation of macrocrack propaga-
tion with tensile loading r22 in x m

2 -direction.

In Fig. 8 a crack path obtained from the damage mod-
el is compared to a classical fracture mechanical predic-
tion based on free crack surfaces, an adaptive remeshing
algorithm and the calculation of the J-integral 25. The frac-
ture mechanical numerical tool has been verified on the
basis of various experiments and is intended to serve as a
benchmark. A hole in the plate attracts the crack which
is again exposed to tensile loading. The blue line repre-
sents the crack path from fracture mechanics, the red area is
the damage zone. The crack deflection by the hole is a lit-
tle overestimated with the damage mechanical approach,
however, qualitatively providing the essential features of
the crack path. In contrast to the fracture mechanical sim-
ulation, where an incipient crack is required in the model,
the onset of a crack can likewise be predicted with dam-
age mechanical approaches. Accordingly, crack formation
at the hole is indicated by a small second damage zone in
Fig. 8.

Fig. 8: Crack path in a plate with a hole predicted by a damage
simulation compared to a simulation based on classical fracture
mechanics.

A comparison of crack path predictions based on con-
tinuum damage mechanics and the phase field method is
presented in Fig. 9. The latter calculations have been per-
formed within the framework of another project of the

joint research program 26. A plate with nano-inclusions
that are stiffer than the matrix material is exposed to ten-
sile loading. Four arbitrarily chosen frames showing dif-
ferent stages of crack growth are presented. The crack is
nucleated at a sharp notch, located on the left-hand side of
the specimen. With a closer look at the continuum damage
mechanical simulation in the left column, a further crack
nucleation is predicted in the third frame, starting from the
bottom of one inclusion. In general, crack path deflections
are observed due to the stiffness discontinuities, yielding
similar results for both modeling approaches.

Fig. 9: Comparison of crack paths in a plate under tensile stress with
spheric inclusions provided (a) by the continuum damage approach
and (b) by the phase field method.

Fig. 10 illustrates results of a brittle structure with ther-
mal shock loading at a small section of the top surface.
Boundary conditions and material data of the simulations
are largely based on experiments within the framework of
another project of the joint research program, where disks
made of AZT-refractory ceramics have been exposed to
an electron beam acting on a 4 cm2 part of the surface 27.
The absorbed power density is estimated to be as large as
q̄ = 42 MW/m2, in the experiments being maintained as
long as 0.5 s (Fig. 10(a)) and 0.1 s (Fig. 10(b)), respective-
ly. In the simulations, the remaining surface of the model
is assumed to be adiabatic. Mechanically the specimen is
supported at the bottom edge, allowing for free extension
due to the heating. The thermal loading is intermittent, ex-
hibiting constant power densities, interrupted by two sec-
onds of rest.

The plots in Fig. 10 show three stages of damage after dif-
ferent numbers of load cycles, from 5 to 50. The blue re-
gions are those of partial damage, where f0 < f < 1 holds for
the internal variable, i.e. microcracks have initiated, how-
ever, they have not grown sufficiently large to effect local
rupture. The red areas indicate macroscopic cracks as in
the previous figures. Maximum temperatures are predict-
ed to be as large as almost 3000 °C, whereas measurements
yield maximum values below 2000 °C. An overestimation
of temperatures in the simulation is expected due to the
adiabatic boundary conditions and an ideal assumption
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of heat transfer in the impact zone. The results in Fig. 10,
however, are not intended to provide quantitative predic-
tions, without any doubt requiring a more sophisticated
modeling of thermal boundary conditions and heat trans-
fer.

Fig. 10: Simulation of cyclic thermal shocks applied to the surface
of a specimen in accordance with experiments 27.

Anyhow, in the experiments damage is not observed at
the surface of the specimen, unless a sufficiently large
number of cycles has been imposed. The simulations re-
veal that damage is nucleated underneath the surface at an
early stage, approaching the heating zone with increasing
number of cycles. Breaking the experimental specimen in
two parts after a few load cycles supports this conclusion.
In the experiment, however, a damaged surface was ob-
served with fewer cycles than in the simulation, which is
attributed to the erosive nature of the electron beam.

The model in Fig. 11 shows the typical shape of a refrac-
tory brick with a concavely curved top edge, exposed to a
thermal shock heat flux q̄ = 30 MW/m. Width and height
of the model have been chosen as 100 × 80 mm, the bot-
tom edge is mechanically supported allowing for uncon-
strained extension, and the three edges, not being exposed
to the heat flux, are adiabatic. Simulations for three ther-
mal load cycles, as depicted in the plot, are presented in
Fig. 11, each one with a heat flux kept constant for 30 sec-
onds, interspersed with 10 seconds of rest. The damage
zones or cracks, outlined in red, are shown at the ends of
the heating periods. A network of cracks develops, again
nucleating underneath the surface and growing with in-
creasing number of thermal shocks. The largest effect on
the damage is observed for the first two shocks, while the
crack pattern develops moderately with further load cy-
cles.

While the results introduced above show crack patterns,
providing an illustrative insight into the extent of damage
due to different loading scenarios, Fig. 12 is intended to

demonstrate the potential of the simulation tool to assess a
refractory material or structure quantitatively with regard
to thermal shock resistance or residual strength. A Hassel-
man diagram 28 has been predicted by numerical simula-
tion based on two different values of the thermal expansion
coefficient. One holds the value of the above-discussed re-
sults, the other is reduced by 25 %. The plots indicate the
critical bending stress rB from a three-point bending test of
a rectangular bar specimen in terms of the maximum nor-
mal stress determined from a handbook formula in con-
nection with the critical fracture load. The values rB are
plotted versus the quenching temperature, which has been
varied in different simulations. In the experiment, just as
in the numerical simulation, the specimen is first exposed
to a thermal shock, subsequently to three-point bending.
Specimens with damage patterns right after the thermal
shock are depicted on the right-hand side for two temper-
ature jumps Δh imposed on the bottom edges.

Fig. 11: Thermal shock cycles imposed on a structure resembling a
concavely curved refractory brick.

The simulations reveal that the residual strength after
the thermal shock is considerably reduced if the quench-
ing temperature exceeds a threshold value Δhcrit, the latter
amongst other parameters depending on the thermal ex-
pansion coefficient a. The damage patterns correspond to
the blue curve with the original value a = 100 %, where
Δh = 250 K is below the critical temperature difference,
while Δh = 380 K is above. The rigorous drop of residu-
al strength due to thermal shock, allowing for the intro-
duction of Δhcrit, is also observed experimentally 29. Has-
selman introduced a thermal shock coefficient R = rB(1-
m)/aE to assess the resistance of a refractory material to
thermal shock loading. The values for the numerical tests
are R = 608 K for a = 100 % (Δhcrit = 320 K) and R = 1081 K
for a = 75 % (Δhcrit = 490 K), respectively, where rB is in-
serted from the upper plateau, i.e. for Δh → 0. The coeffi-
cient R allows for qualitative assessments, where large val-
ues are desirable. Quantitative predictions require numer-
ical simulations as presented.

In Fig. 13, a graded structure consisting of three ceram-
ic layers is shown. Two different materials have been used,
both for experiments that have been performed within the
framework of the joint research program and the simula-
tions. In the left figure, the middle layer consists of A21,
surrounded by two layers of A1518, in the right figure
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Fig. 12: Hasselman diagram from simulations with different thermal expansion coefficients and thresholds Δhcrit for degradation of resid-
ual strength rB (left); damaged specimen for Δhcrit=320 K corresponding to different quenching temperatures (right).

Fig. 13: Simulation of cyclic heating and quenching processes by means of two multilayer systems A1585-A21-A1585 (left) and A21-
A1585-A21 (right).

the composition is reversed. Both systems have been ex-
posed to quenching from all sides caused by emerging of
the specimens into water after they had been in an oven
to a temperature of 1000 °C. Step 1 depicts the condition
of the specimen after the linear heating period lasting for
327 minutes. Step 2 shows the state after 30 minutes of con-
stant surface temperature. Step 3 shows results right after
the shock cooling to room temperature, which is supposed
to take 10 seconds in the simulations. Step 4 displays the
condition after further 15 minutes of exposure to room
temperature.

Before the specimen is exposed to the above procedure,
it has been sintered. Owing to the different shrinkage rates
of the two materials, residual stresses are obtained which
are compressive in the layers of A21 and tensile in the
layers consisting of A1585. In the simulation, this man-
ufacturing process is modeled by assuming suitable ther-
mal extension coefficients in connection with hypotheti-
cal, homogeneously distributed temperature changes. The
magnitudes of residual stresses in the experiment and in
the simulation thus are comparable, amounting to approx.
± 60 MPa. In a comparison of the two compositions in
Fig. 13, the left one exhibits tensile residual stress in the
outer layers, while compressive stress is stored in the sur-
rounding layers of the right one. Besides that, the elas-

tic modulus and specific heat capacity of A1585 are larger
than for A21.

Owing to these features it is obvious that the left compo-
sition (A1585-A21-A1585) is damaged severely compared
to the right one (A21-A1585-A21). In both systems an on-
set of damage is not observed during the heating period but
due to the quenching (step 3). The damage process, howev-
er, is not stopped right after reaching room temperature at
the surface of the specimen, but continues during further
exposure to the environment (step 4). The effect of dam-
age reduction due to compressive residual stress might be
smaller than expected, though. In this context, the tensile
stress due to thermal loading appears to be about one order
of magnitude larger than the compression.

In Fig. 14 the geometry and boundary conditions are the
same as in Fig. 11, including an identical thermal load-
ing scheme and results taken at the same instants in time.
The simulations, however, are based on the numerical
cell model accounting for grain boundaries and inter-
crystalline crack growth. The parameters for the cohesive
laws in normal and shear direction have been chosen as
Gc = 38 N/m, d c

(i) = 0.5 lm, Knn = 3.05⋅1010 N/mm3, and
Kss = Knn⋅10-3. A comparison of Figs. 11 and 14 reveals
that the damage patterns are similar, indicating four to six
isolated branches which could be interpreted as macro-
scopic cracks or crack networks. All of them tend to di-
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verge from the axis of symmetry, both with analytical
and numerical cell models. The relative areas of damaged
zones are slightly larger for the polycrystalline two-scale
FE approach than for the analytical crack model. If the av-
erage grain size is reduced from 10 lm to 5 lm, the damage
patterns in Fig. 15 are obtained. A size effect is incorporat-
ed relating the separation d to the average grain size, thus
d c

(i) = 0.25 lm and Knn = 1.21⋅1011 N/mm3. In contrast to
the coarse-grained material according to Fig. 14, the crack
network exhibits a much larger density. It is concluded
that the thermal shock resistance appears to be negatively
affected by the reduction of the grain size, unless the mod-
el neglects essential physical or chemical features related
to the dimensions of crystallites.

Fig. 14: Periodical thermal shocks on a refractory brick with
the identical load history, initial and boundary conditions from
Fig. 11 using the numerical cell model of intercrystalline microc-
rack growth.

Fig. 15: Refractory brick under thermal shock with decreased grain
size, but otherwise the same conditions as in Fig. 14.

IV. Summary
Finite element simulations of mechanically and ther-

mally loaded plane specimens are presented, referring
to typical scenarios refractory ceramics are exposed to.
It is shown that continuum damage mechanics of brit-
tle solids is capable of predicting paths of macroscopic
cracks, although the more appropriate approach in that
case certainly remains classical fracture mechanics. Both
two-scale models, one on the microscale based on an ana-
lytical, the other one on a numerical cell model, have been
proven to efficiently predict damage patterns in an illus-
trative way and to provide quantitative data like threshold
temperatures for drastic degradation of residual strength
or critical numbers of load cycles. Damage mostly is ini-
tiated underneath the surface, remaining invisible for the
first few load cycles. The largest part of the damage is at-
tributed to the first thermal shock in a sequence of several
cycles. A graded structure in terms of a suitable combi-
nation of ceramic layers may improve the thermal shock
resistance of a refractory surface coating.
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