Abstract

The crystal structure of a new phase plays an important role in understanding its properties. The structure, elastic and electronic properties of Ti5Al2C3 are studied based on first-principles calculations. The simulated lattice parameter and internal coordinates are found to be in good agreement with the experimental values. It is shown that this new phase is mechanically stable. The elastic properties are estimated from the individual elastic constants with the help of Hill’s approximation. The bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, theoretical density and Debye temperature of Ti5Al2C3 are calculated to be 147 GPa, 124 GPa, 290 GPa, 0.17, 4.12 g/cm3 and 759 K, respectively. The band structure and DOS reveal that Ti5Al2C3 is conductive. At the Fermi level (E\text{F}), the energy band is contributed mainly by the Ti 3d state and secondarily by the Al 3p state. Ti-Al hybridizations are located just below the E\text{F} and are weaker than the Ti-C bonds, which are much deeper in energy.

Keywords: Ti5Al2C3, first-principles, mechanical stability, electronic structure

I. Introduction

The ternary-layered carbides and nitrides of the M\text{n+1}AX\text{n} phases (abbreviated as MAX phases), where n = 1, 2, or 3, M being a transition metal, A being of a group A element mostly from groups of IIIA or IVA, and X being of C or N, have been extensively studied in recent years on account of their unique properties \(^1\text{–}\text{4}\). Similar to metals, the MAX phases are excellent electric and thermal conductors with exceptional thermal shock resistance and damage tolerance \(^5\text{–}\text{10}\). They also exhibit resistance to oxidation \(^11\text{–}\text{14}\) and corrosion \(^15\text{–}\text{16}\). Furthermore, they are quite elastic, yet readily machinable \(^17\text{–}\text{18}\). These salient properties make them suitable for various potential applications. They demonstrated that the radiation damage tolerance \(^19\), resistance to ultra-high-temperature ablation \(^20\), self-lubrication \(^21\text{–}\text{22}\) and so on are required. According to the value of n, the MAX phases can be further categorized as 211 (n = 1), 312 (n = 2), and 413 (n = 3) types \(^1\). Up to now, over sixty members have been identified.

The 523 phase is a new-type member of the MAX phases, which cannot be described with the conventional M\text{m}A\text{m+1}X\text{n} formula. The 523 phase carbides including Ti5Si2C3 \(^23\), Ti5Ge2C3 \(^24\), Ti5Al2C3 \(^25\), and (V,Cr)5Al2C3 \(^26\) together with the conventional MAX phases follow another general formula M\text{m}A\text{m+1}X\text{n} (n \geq 2m, n and m are integers) \(^27\). These new members belong to another category that is called higher-order MAX phases. A review of the higher-order MAX phases can be found elsewhere \(^2,28\). To date, higher-order phases have been observed mostly in thin films. Ti5Si2C3 was first reported in the Ti-Si-C film by Palmquist \textit{et al.} \(^23\).

Ti5Al2C3 was reported to grow interiorly in bulk Ti2AlC by Lin \textit{et al.} \(^29\) and was found in Ti2AlC thin films by Wilhelmsson \textit{et al.} \(^30\). In both cases, however, the Ti5Al2C3 was only observed with TEM to exist in small domains. Consequently, the XRD pattern could not be collected. Recently, bulk Ti5Al2C3 was synthesized based on the topotactic transformation of Ti2AlC under Ar after 8 h at 1500 °C \(^25\) by Lane \textit{et al.} and by means of reactive hot pressing of a mixture of Ti, Al and graphite powders with a nominal molar ratio of Ti:Al:C = 5:2.15:2.78 at 1580 °C for 1 h by Wang \textit{et al.} \(^31\). Wang \textit{et al.} \(^31\) claimed that Ti5Al2C3 crystallizes in hexagonal structure with P63/mmc space group symmetry. The crystal structure has Ti1 and Ti2 at Wyckoff position 4f, Ti3 at 2d, Al at 4e, C1 at 2a, and C2 at 4e with lattice parameters of a = 3.038 Å and c = 32.261 Å. However, different opinions on the crystal structure of this new compound are presented \(^32\). Lane \textit{et al.} deduced that the stacking sequence of Ti5Al2C3 can be considered as the alternate layers of Ti2AlC and Ti5AlC2. It was concluded that Ti5Al2C3 crystallizes in a trigonal structure with P3\text{m}1 space group. The crystal structure consists of three formula units and the lattice parameter is a = 3.064 Å and c = 48.23 Å. Zhang \textit{et al.} \(^37\) analyzed the crystal structure of Ti5Al2C3 with the combined techniques of XRD, convergent beam electron diffraction and \textit{ab initio} calculations. They demonstrated that the P3\text{m}1 space group better fits the experimental XRD result. The lattice parameter is a = 3.056Å and c = 48.1846 Å in a hexagonal unit cell.
Table 1: Calculated structure parameters of Ti$_5$Al$_2$C$_3$ at zero pressure.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Method</th>
<th>Lattice parameter (nm)</th>
<th>Atom position</th>
<th>Rietveld refined [27]</th>
<th>Ab initio calculation [27]</th>
<th>First-principle [this work]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$a = 0.30564$</td>
<td>$a = 0.30752$</td>
<td>$a = 0.30735$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$c = 4.81846$</td>
<td>$c = 4.85868$</td>
<td>$c = 4.86254$</td>
</tr>
<tr>
<td></td>
<td>Ti$_1$ (3a)</td>
<td></td>
<td></td>
<td>(000)</td>
<td>(000)</td>
<td>(000)</td>
</tr>
<tr>
<td></td>
<td>Ti$_2$ (6c)</td>
<td></td>
<td>(2/3, 1/3, 0.0497)</td>
<td>(2/3, 1/3, 0.0487)</td>
<td>(2/3, 1/3, 0.0487)</td>
<td>(2/3, 1/3, 0.0487)</td>
</tr>
<tr>
<td></td>
<td>Ti$_3$ (6c)</td>
<td></td>
<td>(2/3, 1/3, 0.1428)</td>
<td>(2/3, 1/3, 0.1431)</td>
<td>(2/3, 1/3, 0.1431)</td>
<td>(2/3, 1/3, 0.1431)</td>
</tr>
<tr>
<td></td>
<td>Al (6c)</td>
<td></td>
<td>(0, 0, 0.0960)</td>
<td>(0, 0, 0.0961)</td>
<td>(0, 0, 0.0961)</td>
<td>(0, 0, 0.0961)</td>
</tr>
<tr>
<td></td>
<td>C$_1$ (3b)</td>
<td></td>
<td>(0, 0, 0.5)</td>
<td>(0, 0, 0.5)</td>
<td>(0, 0, 0.5)</td>
<td>(0, 0, 0.5)</td>
</tr>
<tr>
<td></td>
<td>C$_2$ (6c)</td>
<td></td>
<td>(1/3, 2/3, 0.0275)</td>
<td>(1/3, 2/3, 0.0267)</td>
<td>(1/3, 2/3, 0.0267)</td>
<td>(1/3, 2/3, 0.0266)</td>
</tr>
</tbody>
</table>

The first-principles calculations based on density-functional theory (DFT) aim to find eigenfunctions and eigenvalues of the Hamiltonian in a parameter-free approximation. They have been successfully applied to obtain atomic and molecular information. Recently, DFT has been extensively employed to study new members of the MAX phases. Generally speaking, theoretical calculations result agree well with the available experimental data. To date, theoretical studies on the newly synthesized Ti$_5$Al$_2$C$_3$ are insufficient. To make matters worse, these previous results are incorrect because the atomic positions and space group have been mistakenly employed. It is necessary to further explore the crystal structure and properties of this new ternary carbide. In this paper, we present a detailed and systematically theoretical study on the structural, mechanical and electronic properties of Ti$_5$Al$_2$C$_3$ based on the first-principles calculations.

II. Computational Details

The internal atom coordinates and the lattice parameters of Ti$_5$Al$_2$C$_3$ were independently optimized and the ground-state electronic structures were calculated using the standard CASTEP code, which employs the plane-wave pseudopotential method based on density-functional theory. The plane-wave energy cutoff and the Brillouin zone sampling were fixed at 450 eV and $10 \times 10 \times 2$ Monkhorst-Pack special k-point meshes, respectively. Interactions of electrons with ion cores were represented by the Vanderbilt-type ultrasoft pseudopotential.

The electronic exchange-correlation energy was estimated according to the generalized-gradient approximation of Perdew, Burke and Ernzerhof (GGA-PBE). The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was used to minimize the total energy and internal forces. The tolerances for geometry optimization were set as the difference in total energy being within 5×10^{-6} eV/atom, the maximum ionic Hellmann-Feynman force being within 0.01 eV/Å, the maximum stress being within 0.02 GPa and the maximum ionic displacement within 5×10^{-4} Å. The criteria for convergence in optimizing atomic internal freedoms were selected as follows: difference on total energy within 1×10^{-6} eV/atom, ionic Hellmann-Feynman forces within 0.002 eV/Å and maximum ionic displacement within 1×10^{-6} Å.

III. Results and Discussion

(1) Crystal structure and cohesive energy

As the first step, the geometrical structure was optimized at zero pressure. The equilibrium structure of Ti$_5$Al$_2$C$_3$ was obtained after the atomic position and lattice parameter were relaxed independently. The present results, previously experimental and simulated results for Ti$_5$Al$_2$C$_3$ are shown in Table 1. It can be seen that our simulated results are in good agreement with the previous data.

The cohesive energy is a measure of the strength of the forces that bind atoms together in the solids, and is important for understanding structural stability. The cohesive energy E_{coh} per atom is defined as the total energy of the constituent atoms at an infinite separation with the subtraction of total energy of the compound,

$$E_{coh} = \frac{5E_{Ti} + 2E_{Al} + 3E_{C} - E_{TiAlC}}{10}$$

where E_{TiAlC} refers to the calculated total energy of Ti$_5$Al$_2$C$_3$ at 0 K at equilibrium state, and E_{Ti}, E_{Al} and E_{C} are the pseudo-atomic energies of the pure constituents Ti, Al and C, respectively.

(2) Mechanical properties and Debye temperature

In order to study the mechanical properties of Ti$_5$Al$_2$C$_3$, the second-order elastic constants C_{ij}, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson’s ratio ν from the individual elastic constants by Hill’s approximation are further calculated. The obtained values are listed in Table 2, together with the theoretical values of Ti$_3$AlC$_2$ and Ti$_2$AlC for comparison. It can be seen that Ti$_5$Al$_2$C$_3$ has smaller values for C_{11} and C_{33} than those of the Ti$_3$AlC$_2$, indicating a lower resistance against the principal strain ϵ_{11} and ϵ_{33}. The C_{11} of Ti$_5$Al$_2$C$_3$ is 11 GPa larger than that of Ti$_2$AlC, but the C_{33} is 39 GPa smaller. The C_{44} of Ti$_5$Al$_2$C$_3$ is smaller than those of the Ti$_3$AlC and Ti$_3$AlC$_2$, thereby indicating lower resistances to basal and prismatic shear deformations.
bulk modulus B of Ti$_5$Al$_2$C$_3$ is lower than that of Ti$_3$AlC and Ti$_3$AlC$_2$, indicating a lower resistance to the volume change. The shear modulus G of Ti$_5$Al$_2$C$_3$ is very close to that of Ti$_3$AlC, suggesting a similar resistance to the shape change as Ti$_3$AlC. Furthermore, the Poisson’s ratio ν of Ti$_5$Al$_2$C$_3$ is very close to that of Ti$_3$AlC$_2$ and Ti$_2$AlC.

The elastic constants of a material are very important because they are related to various fundamental solid-state properties and can provide valuable information about the mechanical stability. A necessary condition for a material to be mechanically stable is that its elastic constants should satisfy the well-known Born stability criteria. For a trigonal system, the criteria should obey the following conditions:

$$C_{11}+C_{12}+2C_{33}>2C_{13},$$
$$C_{11}+C_{12}-2C_{44}>2C_{14}.$$ \hspace{1cm} (2)

According to the calculated elastic constants, it is obvious that these criteria are satisfied for Ti$_5$Al$_2$C$_3$, and hence it is mechanically stable at zero pressure.

In thermodynamics and solid state physics, the Debye temperature (θ_D) is an important parameter and can effectively estimate the phonon contribution to the specific heat at low temperature. There are various methods to obtain the value of θ_D. In the present study, the θ_D of Ti$_5$Al$_2$C$_3$ is calculated by means of the sound velocity (v_m) using the following equation 48:

$$\theta_D = \frac{h}{k} \left(\frac{3n}{4\pi} \right)^{1/3} \nu_m$$ \hspace{1cm} (3)

where h is the Planck’s constant, k is Boltzmann’s constant, n is the number of atoms in the molecule, π is the circumference ratio, N_A is Avogadro’s number, ν is the density and M is the molecular weight. The mean sound velocity in the polycrystalline materials is estimated approximately with the following equation 49:

$$v_m = \left[\frac{2}{3} \left(\frac{1}{v_1} + \frac{2}{v_2} \right) \right]^{1/3}$$ \hspace{1cm} (4)

where v_1 and v_2 are the longitudinal and transverse sound velocity, respectively. They are determined with the shear modulus (G) and the bulk modulus (B) from Navier’s equation 49:

$$v_1 = \sqrt{\frac{B+G/3}{\rho}} \text{ and } v_2 = \sqrt{\frac{G}{\rho}}$$ \hspace{1cm} (5)

The theoretical density and θ_D of Ti$_5$Al$_2$C$_3$ are calculated to be 4.12 g/cm3 and 759 K, respectively. Unfortunately, as far as we are aware, no experimental data are available for comparison with these simulated values.

(3) Electronic properties and bonding characteristics

To obtain an insight into the electronic properties of the Ti$_5$Al$_2$C$_3$, its band structure is further examined. The band structure along selected high-symmetry lines within the first Brillouin zone is shown in Fig. 1. It can be clearly seen that there is no gap at the Fermi level (E_f). The valence and conduction bands overlap greatly and there are considerable bands across the E_f, which is analogous to the major members of MAX phases 1. As a result, Ti$_5$Al$_2$C$_3$ is expected to exhibit thermal and electrical conductivity as good as that of metal. Moreover, an important feature of the band structure is the strong anisotropy with less c-axis energy dispersion. This can be seen from the reduced dispersion along the short H–K and M–L directions. Therefore, the conductivity for single-crystal Ti$_5$Al$_2$C$_3$ is also supposed to be anisotropic.

In order to understand the bonding in Ti$_5$Al$_2$C$_3$, the total density of states (TDOS) and partial density of states (PDOS) at equilibrium states are calculated, the results of which are shown in Fig. 2. It can be seen that Ti 3d state dominates with less contribution of Al 3p state above the E_f. The TDOS at E_f is 10.6 states/eV unit cell, suggesting that Ti$_5$Al$_2$C$_3$ is conductive. The PDOS at the E_f is dominated mainly by the Ti 3d state and secondarily by the Al 3p state. As a result, Ti 3d dominates the conductivity of Ti$_5$Al$_2$C$_3$. The C does not contribute to the DOS at the E_f and therefore is not involved in the conduction properties. The energy bands from -1.8 eV to 0 eV are dominated by the hybridized Ti 3d, Ti 3p and Al 3p states. Therefore, Ti$_5$Al$_2$C$_3$ appears to have a metallic nature, resembling many of the MAX phases 1. The lower energy bands in the range of -6.2 eV to -1.8 eV are mainly composed of the Ti 3d, Ti 3p, Al 3p and C 2p hybridized states. This implies Ti$_5$Al$_2$C$_3$ could also exhibit a covalent nature. It is interesting to note there are quite a few peaks in the Al 3s and 3p states from -7.2 eV to -2.5 eV, indicating there is sp hybridization in Al, i.e. the close-packed layer of Al atoms is bonded as a result of sp hybridization. This result is similar to the previous reports on Ti$_3$AlC and Ti$_3$AlC$_2$. The lowest energy bands from -12.1 eV to -8.9 eV originate mainly from the hybridized states of Ti 3d, Ti 3p and C 2p. Clearly, the hybridized Ti and C states are located at a lower energy range compared with Ti–Al hybridization. These results indicate that the Ti–C bonding is stronger than the Ti–Al bonding. These results are similar to those of the conventional MAX phases that typically have exceptionally strong M–X bonds and relatively weak M–A bonds 1, 50.

Table 2: The calculated second-order elastic constants C_{ij} (GPa), bulk modulus B (GPa), shear modulus G (GPa), Young’s modulus E (GPa) and Poisson’s ratio ν of Ti$_5$Al$_2$C$_3$ and related phases.

<table>
<thead>
<tr>
<th>Compound</th>
<th>C_{11}</th>
<th>C_{12}</th>
<th>C_{13}</th>
<th>C_{14}</th>
<th>C_{33}</th>
<th>C_{44}</th>
<th>B</th>
<th>G</th>
<th>E</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti$_5$Al$_2$C$_3$</td>
<td>332</td>
<td>67</td>
<td>62</td>
<td>-0.5</td>
<td>277</td>
<td>119</td>
<td>147</td>
<td>124</td>
<td>290</td>
<td>0.17</td>
</tr>
<tr>
<td>Ti$_3$AlC$_2$ [4]</td>
<td>368</td>
<td>81</td>
<td>76</td>
<td>0</td>
<td>313</td>
<td>143</td>
<td>168</td>
<td>135</td>
<td>320</td>
<td>0.18</td>
</tr>
<tr>
<td>Ti$_2$AlC [47]</td>
<td>321</td>
<td>76</td>
<td>100</td>
<td>0</td>
<td>318</td>
<td>144</td>
<td>164</td>
<td>127</td>
<td>305</td>
<td>0.19</td>
</tr>
</tbody>
</table>
Fig. 1: Calculated band structure along the high symmetry direction in the first Brillouin zone of Ti$_5$Al$_2$C$_3$.

Fig. 2: The calculated total and partial density of states (DOS) for Ti$_5$Al$_2$C$_3$. The Fermi energy is set to 0 eV.

IV. Conclusions

In summary, we have studied the structure, elastic and electronic properties of Ti$_5$Al$_2$C$_3$ using the first-principles method. The calculated lattice constant and internal coordinates are consistent with the experimental values. The bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, theoretical density, and Debye temperature of Ti$_5$Al$_2$C$_3$ are calculated to be 147 GPa, 124 GPa, 290 GPa, 0.17, 4.12 g/cm3 and 759 K, respectively. The cohesive energy and Born criteria reveal that Ti$_5$Al$_2$C$_3$ is stable. The band structure and DOS show that Ti$_5$Al$_2$C$_3$ is conductive. At the E_f, the energy band originates mainly from the Ti 3d state and secondarily from the Al 3p state. Ti-Al hybridizations are located below the E_f and are weaker than the Ti-C bonds, which are in deeper energy. The authors hope that these theoretical predictions will inspire experimental investigation of Ti$_5$Al$_2$C$_3$.

Acknowledgements

This work was financially supported by the project funded by China Postdoctoral Science Foundation (2015M571865), the Preferred Fund of Postdoctoral Scientific Research Project of Zhejiang Province, the Scientific Research Fund of Zhejiang Provincial Education Department (Y201120994) and the National Science Foundation of China (11375079).

References

1. Barsoum, M.W.: The M$_{N+1}$AX$_N$ phases: A new class of solids; thermodynamically stable nanolaminates,
2. Eklund, P., Beckers, M., Jansson, U., Hogberg, H., Hultman, L.: The M$_{N+1}$AX$_N$ phases: materials science and thin-film processing,
3. Qian, X.K., He, X.D., Li, Y.B., Sun, Y., Li, H., Xu, D.L.: Cyclic oxidation of Ti$_5$Al$_2$C$_3$ at 1000 – 1300°C in air,
4. He, X.D., Bai, Y.L., Zhu, C.C., Sun, Y., Li, M.W., Barsoum, M.W.: General trends in the structural, electronic and elastic properties of the M$_3$AlC$_2$ phases (M = transition metal): A first-principle study,
5. Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S., Wang, J.Y.: Atomic-scale characterization of layered ternary Cr$_2$AlC$_2$ ceramic,
8. Qian, X.K., Li, Y.B., He, X.D., Fan, H.H., Yun, S.N.: First-principle study of structural and electronic properties of ternary layered Ta$_2$AlC,
10. Qian, X.K., Li, Y.B., He, X.D., Chen, Y.X., Yu, S.N.: Electrical and thermal properties of Ti$_5$Al$_2$C$_3$ at high temperature,
11. Wang, X.H., Zhou, Y.C.: Oxidation behavior of Ti$_5$Al$_2$C$_3$ at 1000 – 1400°C in air,
12. Qian, X.K., He, X.D., Li, Y.B., Sun, Y., Zhu, C.C.: Improving the cyclic-oxidation resistance of Ti$_5$Al$_2$C$_3$ at 550°C and 650°C by preoxidation at 1100°C,
13. Qian, X.K., Li, Y.B., Sun, Y., He, X.D., Zhu, C.C.: Cyclic oxidation behavior of TiC/Ti$_5$Al$_2$C$_3$ composites at 550 – 950°C in air,
14. Gupta, S., Hoffman, E.N., Barsoum, M.W.: Synthesis and oxidation of Ti$_3$In$_2$C$_2$, Zr$_2$In$_2$C$_2$, (Ti$_{5/2}$Zr$_{5/2}$)$_2$InC and

