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Abstract
Nanosized powders of orthophosphates in the LaPO4-YPO4(-H2O) and LaPO4-LuPO4-H2O systems are synthe-

sized to increase the mutual solubility of LaPO4⋅nH2O, YPO4⋅nH2O and LuPO4⋅nH2O initial components and to
investigate physicochemical properties of nanosized solid solutions and their mixtures. The temperature dependence
of nanoparticle size is investigated in the 200 – 1100 °C temperature range. Formation of limited hexagonal, monoclin-
ic or tetragonal solid solutions is revealed, and the limits of their concentration and thermal stability are determined.
In the LaPO4-YPO4(-H2O) system a series of limited hexagonal LaPO4·nH2O-based solid solutions is observed up
to 500 – 600 °C within the 0 ≤ x ≤ 0.5 concentration range; a monoclinic LaPO4-based form is observed up to at least
1000 °C within the 0 ≤ x ≤ 0.7 concentration range. Melting temperatures of La1-xYxPO4 samples are found to be in
the 2010 – 1960 °C temperature range. In the LaPO4-LuPO4-H2O system corresponding hexagonal solid solutions
are observed within the 0 ≤ x ≤ 0.4 concentration range; isomorphic capacity of the monoclinic form at 1100 °C is be-
tween 20 – 25 mol%. Solubility of LaPO4 in tetragonal YPO4 or LuPO4 in all cases is less than 10 mol%. The specific
surface area of La1-xLuxPO4⋅nH2O powders is in the range of 46.7 – 90.3 m2/g depending on x.
Keywords: LaPO4-YPO4-H2O and LaPO4-LuPO4-H2O systems, nanopowders, thermal behavior

I. Introduction
Rare earths orthophosphates are attracting considerable

interest from researchers because of their unique proper-
ties and are now widely investigated. They are considered
prospective catalysts for the oxidative dehydrogenation
of ethylbenzene 1, iso-butane to iso-butene 2, 3, as scin-
tillators, laser hosts, and thermophosphors 4, 5, 6. In addi-
tion, ceramics based on rare earth orthophosphates ex-
hibit promising properties owing to their machinabili-
ty 7, 8, 9 and high thermal and radiation stability and could
be considered as matrices for radioactive waste immobi-
lization (radioactive rare earth elements or trivalent ac-
tinides) 10, 11, 12, 13. Efficiency of such ceramic matrices is
based on high isomorphic capacity in relation to immobi-
lized elements. The main requirements for a ceramic ma-
trix are formation of stable compositions with immobi-
lized elements and high isomorphic capacity. In this con-
nection the influence of nanoscale on mutual solubility of
rare earths orthophosphates and other properties appears
to be dramatic.

Rare earth orthophosphate nanopowders obtained with
the sol-gel technique (precipitation from water solution)
were used within the framework of preparation and in-
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vestigation of properties of the ceramics. LaPO4-LuPO4-
H2O and LaPO4-YPO4-H2O were chosen as modeling
systems, where components belong to different struc-
tural groups (hexagonal LaPO4·nH2O or monoclinic
LaPO4 and tetragonal YPO4·nH2O and LuPO4·nH2O
or YPO4·and LuPO4) 14.

Rare earth orthophosphate nanoparticles have of-
ten been synthesized by means of various modifica-
tions of sol-gel method. Analysis of the data presented
in 15, 16, 17, 18 has demonstrated that hydrated orthophos-
phates of rare-earth elements (REE) and their solid so-
lutions are formed at stoichiometric ratio of interacting
components (Ln(NO3)3 and NH4H2PO4, (NH4)2HPO4
or H3PO4) in an aqueous solution in the form of stable
colloids that coagulate at pH ≈ 7.

The hydrated REE orthophosphates (La to Dy), which
crystallize in a hexagonal system upon precipitation con-
tain 0.5 – 3 moles of H2O per formula unit. These com-
pounds are the analogues of rhabdophane, they lose
water molecules on being heated up to 450 – 600 °C
and then transform into monazite-type monoclinic
form 11, 15, 17, 18, 19, 20. The dehydration of other REE
orthophosphates (Ho-Lu, Y, Sc) takes place in the
150 – 450 °C temperature range with the complete removal
of water. According to the data presented in 15, 16, 21, the
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dehydration does not bring about structural transforma-
tions, i.e. the compounds retain the xenotime structure.

According to our previous investigation 22, mutual sol-
ubility of RE orthophosphates belonging to different
structural groups, whose particles have the micron size,
is insignificant and makes up 2 – 3 mol% from each side
(for instance, in the LaPO4-YbPO4 system the limit-
ed solid solutions have the following compositions -
La0.98Yb0.02PO4 (monoclinic) and La0.03Yb0.97PO4
(tetragonal)). In the LaPO4-YPO4 system, according
to 23, solubility of tetragonal YPO4 in monoclinic LaPO4
at 1200 °C ranges up to 20 mol%. Tetragonal solid solu-
tion concentration range is not more than several mol%.
Hexagonal La0.3Y0.7PO4·nH2O solid solution, and a se-
ries of monoclinic La1-xYxPO4 solid solutions obtained
by calcination of initial hexagonal compositions were in-
vestigated in 18, 24. According to this research, heat treat-
ment at 950 °C caused the decomposition of hexagonal
La0.3Y0.7PO4·nH2O solid solution into a monoclinic
La1-xYxPO4 solid solution and tetragonal YPO4. The
solid solubility of Y in LaPO4 in the 1000 – 1600 °C tem-
perature range increases from ∼ 12 at. % at 1000 °C to
∼ 42 at. % at 1600 °C 18.

The purpose of this work is to increase the mutual sol-
ubility of initial components in the case of nanosized
LaPO4-YPO4-H2O and LaPO4-LuPO4-H2O systems
and to investigate physicochemical properties of nano-
sized solid solutions and their mixtures.

II. Experimental
The initial reagents for lanthanum-yttrium and lan-

thanum-lutetium orthophosphates were La2O3 (LaO-
D OST 48 – 194 – 81, 99.999 %), Y2O3 (ItO-Lyum OST
48 – 4-191 – 72, 99.999 %), and Lu2O3 (LyuO-D OST
48 – 207 – 81, 99.999 %), monosubstituted ammonium
phosphate (special-purity grade, 99.5 %), nitric acid (spe-
cial-purity grade, 70 %), aqua ammonia (special-purity
grade, 25 %), and distilled water.

Synthesis of La1-xYxPO4 · nH2O and La1-xLuxPO4 ·
nH2O nanoparticles was performed with a conventional
technique according to following reaction:

(1-x)Ln’2O3 + xLn”2O3
+ 6HNO3 → 2Ln’1-XLn”X(NO3)3+3H2O

2Ln’1-XLn”X(NO3)3 + 2NH4H2PO4
→ 2Ln’1-XLn”XPO4¯ + 2NH4NO3 + 4HNO3,

where Ln’ = La; Ln“ = Y, Lu.
Proper pH ≈ 7 for complete precipitation was reached

with NH4OH addition. The precipitates were kept in the
mother liquor for 24 h, then washed by means of decanta-
tion, filtered off, and dried at 110 °C in air for 24 h 16, 17, 25.

For x-ray powder diffraction analysis a Siemens D-
500HS x-ray diffractometer (Germany) and DRON-3
diffractometer (Russia) were used. The recording parame-
ters were the following: Ni-filtered CuKa radiation, 38 kV,
time constant 1, scanning speed 1 degree per minute.

Nanoparticle size was determined from the broadening
of the diffraction peaks according to Scherrer ’s formu-
la and with the use of transmission electron microscopy
(EM-125 electron microscope, Russia, Uacc = 75 kV).

Temperature dependence of nanoparticle size was de-
termined in the temperature range of 200 – 1100 °C with
isothermal exposure for 1 h.

The specific surface area of powder samples was mea-
sured with a Nova 1200e instrument (Quantachrome,
USA) using nitrogen (99.9999 %) as adsorbing gas. All
calculations were performed using the NovaWIN (Quan-
tachrome, USA) 11 software. Degassing procedure was
performed at 300 ºC for 10 h.

The thermal behavior of the samples was studied by
means of stepwise heating of powders compacted into
tablets under 8 – 10 MPa pressure in the 200 – 1000 °C tem-
perature range with further analysis with XRD or differ-
ential scanning calorimetry (DSC) and thermal gravimetry
(TG).

The DSC/TG measurements were conducted in a
STA 449C (Netzsch) calorimeter; sample mass was about
30 mg; heating rate was 10 °C/min. The onset of the ther-
mal effect was determined from the intersection of the tan-
gents to the base line of the DSC curve and to the branch
of the thermal peak.

The melting temperatures of the samples of the LaPO4-
YPO4 system were determined using visual polyther-
mal analysis (VPA) in Galakhov’s modified microfur-
nace 26, 27, 28. The working temperature range in the mi-
crofurnace was 900 – 2300 ºC. Temperature measurement
accuracy was about ±(10 – 15) K. The measurements were
conducted in an inert atmosphere (argon) at a total pres-
sure in the system of about 0.5 MPa. To avoid active in-
teraction between a specimen and a holder, the latter was
produced from iridium.

III. Results and Discussion

La1-xYxPO4·nH2O (x = 0.0, 0.1, 0.25, 0.3, 0.4,
0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95 and 1.0) and
La1-xLuxPO4·nH2O (x = 0.0, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7,
0.75, 0.8, 0.9 and 1.0) nanopowders were synthesized with
the technique described above.

The XRD patterns of the La1-xYxPO4·nH2O and
La1-xLuxPO4·nH2O samples thus obtained are shown
in Figs. 1 and 2. They indicate that the powders are
nanoscaled, and at temperature of synthesis (room tem-
perature) limited solid solutions are formed.

Substitutional solid solutions based on hexagonal
LaPO4·nH2O extend to concentration of Y3+ approxi-
mately of x = 0.5(0.7) (Fig. 1, 1 – 5(7)), and solid solutions
based on tetragonal YPO4·nH2O are observed in a nar-
row concentration range (Fig. 1, 9 – 12). Unfortunately,
nanoparticle size of specimens in the 0.4 ≤ x ≤ 1.0 concen-
tration range is so small that x-ray patterns do not allow
precise determination of reflexes belonging to these or
those solid solutions.

X-ray patterns of La1-xLuxPO4·nH2O samples shown
in Fig. 2 allow assumption of an extension of hexagonal
solid solutions approximately to x = 0.5 – 0.6 (Fig. 2, 1 –
6). Solubility of LaPO4·nH2O in LuPO4·nH2O at room
temperature is difficult to assess owing to very broad re-
flexes with low intensity (Fig. 2, 7 – 9).
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Fig. 1: XRD patterns of initial La1-xYxPO4·nH2O samples, x: 0.0
(1), 0.25 (2), 0.3 (3), 0.4 (4), 0.5 (5), 0.6 (6), 0.7 (7), 0.75 (8), 0.8 (9),
0.85 (10), 0.9 (11) 1.0 (12), and the bar graphs represent the XRD
patterns of LaPO4·0.5H2O and YPO4·3H2O of ICDD-PDF.

Fig. 2: XRD patterns of initial La1-xLuxPO4·nH2O samples, x: 0.0
(1), 0.25 (2), 0.3 (3), 0.4 (4), 0.5 (5), 0.6 (6), 0.7 (7), 0.75 (8), 1.0 (9),
and the bar graphs represent the XRD patterns of LaPO4·0.5H2O
and LuPO4·3H2O of ICDD-PDF.

Fig. 3: Dependence of nanoparticle size (D) of initial La1-xYxPO4 ·
nH2O samples on x according to (1) X-ray powder diffraction and
(2) electron microscopy.

The data obtained from x-ray powder diffraction (Figs. 3,
4, curve 1) and transmission electron microscopy (Figs. 3,
4, curve 2) indicate the nanoscale La1-xYxPO4·nH2O
and La1-xLuxPO4·nH2O particles. In addition, accord-
ing to electron microscopy, the samples under inves-
tigation consist of nanoparticles in the form of rods
(LaPO4·nH2O) or thin plates (La1-xYxPO4·nH2O and
La1-xLuxPO4·nH2O), and of a great amount of suffi-
ciently large agglomerates (Fig. 5).

Fig. 4: Dependence of nanoparticle size (D) of initial La1-xLuxPO4
· nH2O samples on x according to (1) X-ray powder diffraction and
(2) electron microscopy.

Fig. 5: Micrographs of nanocrystals: (a) LaPO4·nH2O, (b)
La0.75Y0.25PO4·nH2O and La0.75Lu0.25PO4·nH2O (c) prepared
at room temperature.

When heated, hexagonal LaPO4·nH2O and its solid
solutions in 500 – 600 °C temperature range transform
into monoclinic form (Figs. 6, 7) stable until at least
1000 – 1100 °C (Figs. 8, 9). Isomorphic capacity of mono-
clinic LaPO4 therefore appeared to be 70 mol% of YPO4,
and not more than 25 mol% of LuPO4. Solubility of
LaPO4 in tetragonal YPO4 and LuPO4 is obviously less
than 10 mol%.

The lattice parameters determined at room temperature
(PDWin program) from the broadening of the diffraction
peaks according to the Scherrer formula for monoclinic
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La1-xYxPO4 series calcined at 1000 °C (1 h) are presented
in 29. The concentration dependence of unit cell parame-
ters confirms, in our opinion, 70 mol% isomorphic capac-
ity of monoclinic LaPO4 at 1000 °C in respect of YPO4.

The concentration dependence of monoclinic
La1-xLuxPO4 unit cell parameters apparently shows
the monoclinic LaPO4 isomorphic capacity at about
20 mol% (Fig. 10). This is in agreement with Y3+ and
Lu3+ ionic radii for coordination number 8 (0.116 and
0.112 nm respectively).

Fig. 6: XRD patterns of La1-xYxPO4 samples after heating at 600 °C
for 1 h, x: 0.0 (1), 0.25 (2), 0.3 (3), 0.4 (4), 0.5 (5), 0.6 (6), 0.7 (7), 0.75
(8), 0.8 (9), 0.85 (10), 0.9 (11) 1.0 (12), and the bar graphs represent
the XRD patterns of LaPO4 and YPO4 of ICDD-PDF – tetragonal
phase.

Fig. 7: XRD patterns of La1-xLuxPO4 samples after heating at
600 °C for 1 h, x: 0.0 (1), 0.25 (2), 0.3 (3), 0.4 (4), 0.5 (5), 0.6 (6), 0.7
(7), 0.75 (8), 1.0 (9), and the bar graphs represent the XRD patterns
of LaPO4 and LuPO4 of ICDD-PDF.

Fig. 8: XRD patterns of La1-xYxPO4 samples after heating at
1000 °C for 1 h, x: 0.0 (1), 0.25 (2), 0.3 (3), 0.5 (4), 0.6 (5), 0.7 (6), 0.8
(7), 0.85 (8), 0.9 (9), 1.0 (10), and the bar graphs represent the XRD
patterns of LaPO4 and YPO4 of ICDD-PDF – tetragonal phase.

Fig. 9: XRD patterns of La1-xLuxPO4 samples after heating at
1100 °C for 1 h, x: 0.0 (1), 0.1 (2), 0.2 (3). 0.25 (4), 0.3 (5), 0.4 (6),
0.5 (7), 0.6 (8), 0.7 (9), 0.75 (10), 0.8 (11). 0.9 (12). 1.0 (13), and the
bar graphs represent the XRD patterns of LaPO4 and LuPO4 of
ICDD-PDF – tetragonal phase (main lines).
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Fig. 10: Unit cell parameters of a monoclinic La1-xLuxPO4 series of samples calcined at 1000 °C (1 h): (a) – parameter a, Å; (b) – parameter b,
Å; (c) – parameter c, Å; (d) – volume V, Å3.

Fig. 11 presents the DSC/TG curves of the
La1-xYxPO4·nH2O samples at various yttrium concen-
trations (x). If these curves are compared with the curves
given in 17 for the La1-xLuxPO4·nH2O series, we can say
that they illustrate the existence of two types of solid so-
lutions with very similar thermal behavior for each type
(endothermic effects observed in the range of 90 – 400 °C
and the considerable weight loss of the samples is asso-
ciated with water removal 17, 19, 20, 21, 22, 24, 25, 30).

Weak exothermic effects with onset in the range of
425 – 485 ºC observed for the samples with Lu3+ content
up to x = 0.5 – 0.6 can be referred to monotropic hexag-
onal-monoclinic phase transformation according to 17, 19

and Fig. 7. A LaPO4⋅nH2O sample usually does not reveal
this effect 31.

In case of La1-xYxPO4·nH2O samples, these weak
exothermic effects based on monotropic hexagonal-mon-
oclinic phase transformation are observed in the range of
420 – 480 ºC up to x = 0.7 – 0.75.

At higher temperatures exothermic effects appear on the
DSC curves of both the La1-xYxPO4·nH2O (Fig. 11) and
La1-xLuxPO4·nH2O series of samples 17, 25 which are not
accompanied by mass loss.

In particular, a La1-xYxPO4·nH2O series shows exother-
mic effects in 613 – 690 ºC temperature range. At Y3+

concentration of x = 0.6, a weak broadened effect ap-
pears at 690 ºC. Then at Y3+ content of x = 0.7 – 0.75
double exothermic effects appear with onset at 616 and
678 ºC, and 618 and 677 ºC respectively. In the case of

YPO4·nH2O, a weak broadened effect is observed at
613 ºC.

A similar phenomenon takes place in the case of
La1-xLuxPO4·nH2O samples 17. In 0.6 ≤ x ≤ 0.75 con-
centration range of Lu3+ double exothermic effects ap-
pear, namely at 715 and 790 ºC for x = 0.6, 725 and 795 ºC
for x = 0.7, 760 and 840 ºC for x = 0.75. In the case of
LuPO4·nH2O a weak broadened effect is observed at
570 ºC.

The size effect of orthophosphates is noticeable in the
general run of DSC curves, especially for the samples con-
taining tetragonal phase 16, 17, 25. Thus on DSC curves the
onset of the exothermal effects is observed at 600 – 700 °C
(Fig. 11, curves 6 – 9), and was not observed for micron-
size particles of Ho, Tm, Er, Yb, Lu and Y orthophos-
phates 21, 30, 32, 33, 34 and considered to be associated with
intensification of nanograin growth process (Figs. 12, 13).

Temperature dependences of the particle sizes D versus
concentrations x for La1-xLuxPO4(⋅nH2O) samples clear-
ly illustrate an existence of two types of solid solutions
(monoclinic and tetragonal). In the case of La1-xYxPO4
(⋅nH2O) this is not so obvious, very likely due to a nar-
rower concentration range for the coexistence of the two
solid solutions (Figs. 12, 13).

Specific surfaces for La1-xLuxPO4(⋅nH2O) samples
compared with literature data and melting temperatures of
La1-xYxPO4 samples are presented in Table 1 and Table 2,
respectively.



242 Journal of Ceramic Science and Technology —L. Mezentseva et al. Vol. 5, No. 3

Fig. 11: DSC curves for the La1-xYxPO4·nH2O samples at yttrium
concentrations x: 0.0 (1), 0.25 (2), 0.3 (3), 0.4 (4), 0.5 (5), 0.6 (6),
0.7 (7), 0.75 (8), 1.0 (9). TG curves for LaPO4·nH2O (1’) and
YPO4·nH2O (9’) samples.

Fig. 12: Dependences of the average particle size D on the calcina-
tion temperature (1 h) for the La1-xYxPO4⋅nH2O samples at various
yttrium concentrations x (within experimental and estimating error
of about 50 % for Scherrer’s formula and about 30 % for electron
microscopy).

Fig. 13: Dependences of the average particle size D on the calcina-
tion temperature (1 h) for the La1-xLuxPO4⋅nH2O samples at vari-
ous lutetium concentrations x (within experimental and estimating
error of about 50 % for Scherrer’s formula and about 30 % for elec-
tron microscopy).

Table 1: Specific surface area of La1-xLuxPO4⋅nH2O pow-
ders determined with the multipoint BET method com-
pared with literature data for LaPO4⋅nH2O.

Sample,
x

Crystal
structure

Specific sur-
face area, m2/g

Specific sur-
face area,

m2/g (from
literature)

0.0 Hexagonal 62.0 55 – 97 34, 76 35

0.25 Hexagonal 90.3 –

0.3 Hexagonal 66.7 –

0.4 Hexagonal 64.6 –

0.5 Hexagonal 53.8 –

0.6 Hexagonal 46.7 –

0.7 Hexagonal 61.1 –

0.75 Hexagon.
+ tetragon.

63.5 –

1.0 Tetragonal 3.3 –

Table 2: Melting temperatures of La1-xYxPO4 samples de-
termined by using VPA in Galakhov’s modified microfur-
nace (argon, total pressure in the system – 0.5 MPa)

Sample, x Crystal struc-
ture

Melting tem-
perature, (± (10 – 15 K))

0.0 Monoclinic 2050

0.25 Monoclinic 2010

0.3 Monoclinic 2040

0.4 Monoclinic 1987

0.5 Monoclinic 1984

0.6 Monoclinic 1993

0.7 Monoclinic 1985

0.75 Monocl. +
tetragon.

1960

1.0 Tetragonal 1980
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IV. Summary
The synthesized individual orthophosphates (LnPO4

⋅nH2O) and their binary compositions in LaPO4-YPO4-
H2O and LaPO4-LuPO4-H2O systems are nanodis-
persed, with an average grain size of 10 – 20 nm and high
specific surface area of hexagonal samples.

Three types of solid solutions were found in the systems –
hexagonal, monoclinic and tetragonal.

In the LaPO4-YPO4(-H2O) system, a series of limited
hexagonal solid solutions based on LaPO4·nH2O is ob-
served up to 500 – 600 °C within the 0 ≤ x ≤ 0.5 concen-
tration range which transforms above this temperature in-
to a monoclinic form based on LaPO4 and remains up to
at least 1000 ºC. The isomorphic capacity of monoclinic
LaPO4 at 1000 ºC is therefore about 70 mol%.

In the LaPO4-LuPO4(-H2O) system, a series of limited
hexagonal solid solutions based on LaPO4·nH2O is ob-
served up to the same temperatures (500 – 600 °C) within
the 0 ≤ x ≤ 0.4 concentration range. Monoclinic form in this
system remains up to 1100 ºC, and its isomorphic capacity
at this temperature is about 20 mol%.

Solubility of LaPO4 in tetragonal YPO4 or LuPO4 in all
cases is less than 10 mol%.

Therefore, rare earths orthophosphate nanopowders
are suitable for the preparation of ceramics for radioac-
tive waste immobilization relating to actinide/rare-earth
group occurring in high-level waste (HLW) because rare
earths orthophosphates possess high chemical resistance
and isomorphic capacity, as well as high thermal stability.

Melting temperatures of La1-xYxPO4 samples were
found to be in the 2010 – 1960 °C temperature range,
which is high enough for the purpose of radioactive waste
immobilization.
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