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Abstract
Fracture and damage processes on micro- and mesoscale are combined with macroscale simulations applying nu-

merical multiscale approaches. Cracks and grain boundaries are reproduced in cell models that take account of trans-
and intercrystalline crack growth. The global, in general thermomechanical boundary value problem is considered
within a continuum mechanics framework. Two approaches are presented combining the scales. Simple processes on
the smaller level are described in analytical models including the damage evolution into the constitutive laws by in-
ternal variables. More complicated microstructural features are incorporated, performing interacting FE simulations
on both scales and applying numerical homogenization schemes.

I. Introduction
In their initial state, damage processes have their origin

on the microscopic level. In brittle materials, microcracks
develop by means of intergranular decohesion or evolve
transgranularly. When a critical volume density of micro-
damage is reached, a macroscopic crack is formed by coa-
lescence of microscopic defects. Thus, at least two differ-
ent scales are involved in the damage process. On the larger
scale, the whole structure is considered including bound-
ary conditions and macrocrack growth. The smaller scale
targets microdefect evolution. A third scale could be in-
volved, looking deeper into the physics of damage includ-
ing atomic debonding. Owing to multiple interactions, the
different levels have to be connected in numerical multi-
scale simulations.

Different techniques have been developed in this respect
starting with pure analytical methods, numerical meth-
ods with a strong analytical background and pure numer-
ical approaches. All of them are based on the principle
of homogenization, i.e. the smaller scale is reproduced
in representative volume elements (RVE) and mapped to
the next larger scale introducing effective properties. One
problem here is the appropriate choice of boundary con-
ditions for the RVE, supplying a few alternatives, finally
leading to different results in terms of effective properties.
Among those, Voigt or Reuss approximations should be
mentioned, assuming constant strain or stress fields inside
the RVE, or periodic displacement boundary conditions
yielding results in between the Reuss and Voigt bounds.

Simple defects like idealized straight cracks can be mod-
eled and homogenized analytically. More sophisticated
models including e.g. grain boundaries have to be imple-
mented in numerical RVEs, applying e.g. the Finite Ele-
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ment Method (FEM). For linear reversible processes the
effective properties, e.g. effective elastic constants, may be
determined from RVE simulations being decoupled from
the global boundary value problem. In general, those con-
stants will depend on loading multiaxiality, however, not
on load history. If damage or other irreversible processes
are involved, a fully coupled multiscale FEM-simulation
is inevitable.

This work is aimed at the investigation of damage evolu-
tion in brittle refractory ceramics under thermomechani-
cal loading. Thus, not only elastic constants have to be cou-
pled in terms of material tangents, but also thermal con-
stants like conductivity or thermal expansion. Owing to
the transient features of a thermal shock, the specific heat
is also a crucial material property. Assuming a one-way
coupling within a single load step, thermal and mechani-
cal boundary value problems can be decoupled.

In a simple model, microcrack growth in a homogeneous
matrix is considered analytically and coupled to the ther-
momechanical FE simulation of the macroscopic problem.
A thermal shock sequence is thus simulated. In a more
sophisticated model, grain boundaries and intergranular
crack growth are considered. First, effective properties are
derived from numerical simulations showing the influence
of loading multiaxiality on effective stiffness and grain
boundary debonding. Second, two-scale coupled FEM-
simulations reveal the damage evolution in a polycrys-
talline brittle solid.

For all numerical simulations, the commercial FE-soft-
ware ABAQUS is used as solver. It provides interfaces,
allowing the implementation of user-defined constitutive
laws including damage evolution. Thus, own numerical
codes have been developed as Python scripts that finally
connect the scales and reproduce the fracture and damage
processes. In contrast to classical applications of damage
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models, the transient heat conduction problem of a ther-
mal shock has to be coupled with mechanical simulations
of damage evolution. Compared to simple analytical as-
sessments, which are still state of the art in the design of
refractory devices, the multiscale numerical approach pre-
sented in this paper provides a much deeper insight into the
physics of thermal shock resistance and enables more so-
phisticated qualitative and quantitative predictions.

II. Theoretical Framework

(1) Principles of homogenization
In this section, the principle of homogenization will be

briefly introduced. It is crucial for macro-meso coupling
of numerical simulations. The typical scheme of multi-
scale methods and homogenization introducing local-
scale average properties is illustrated in Fig. 1.

Fig. 1 : Thermo-mechanical multi-scale problem and concept of
homogenization with effective material properties.

At the macroscale, the refractories are observed as sol-
id continua with thermomechanical initial and boundary
conditions given by stresses -→t and heat flux -→q (Neumann)
or displacements -→u and temperature h (Dirichlet). At the
micro-level, the geometrical and physical properties of the
ceramic microstructure are incorporated by means of a cell
model – RVE 1, 2, which is generally heterogeneous. The
micro- or meso-fields fluctuating along the boundary of
the cell model always have to be energetically equivalent
to their averages 2. The macroscopic behavior of refracto-
ries depends on heterogeneities. In this paper we consider
two different RVE models. One contains a dilute distribu-
tion of cracks in an elastic matrix, the other represents co-
hesive interfaces of grains. The choice of the dimensions of
a cell model is a rather delicate task. The extension of the
RVE, here denoted by d, should be on the one hand much
smaller than the characteristic length L (the extension of
the whole body), on the other much larger than a typical
extension of the defect phase b: L > > d > > b. In 3, dimen-
sions from (0.1 mm)³ for metals and ceramics to (100 mm)³
for concrete are suggested. For fine-grained brittle mate-
rials, a commonly applied value is d = 0.1 mm being relat-
ed to typical microstructures 4. The basic equation for an
average macroscopic stress field in a simply connected do-
main V is given as

〈σij〉 =
1
V

∫

V

σij(xi)dV

=
1
V

∫

V

σikδjkdV =
1
V

∫

V

σikxj,kdV
(1)

where δjk = -→ej · --→ek is the Kronecker symbol or unit tensor
and the stress field σj depends on the location xl. In the
case of quasi-static crack growth and without the action
of body forces, the momentum balance equals σik,k=0. In
this case Eq. (1) can be reformulated according to

〈σij〉 =
1
V

∫

V

(xj,kσik + xjσik,k)dV =
∫

V

(xjσik),kdV (2)

Applying Gauss’s theorem, the average stress 〈σij〉 with
tractions ti and the boundary of the RVE dV are obtained:

〈σij〉 =
1
V

∫

δV

xjσiknkdA =
1
V

∫

δV

xjtidA (3)

The homogenization replaces a heterogeneous materi-
al with an equivalent homogeneous material. The scale
transition takes place point-wise. Plenty of analytical ap-
proaches exist to determine the effective elastic proper-
ties for infinitesimal deformations e.g. Reuss 5, Voigt 6, Es-
helby 7 or Mori-Tanaka 8. For a material with complex
microstructure, numerical multi-scale methods are neces-
sary. There are many classifications of multi-scale meth-
ods, most of them having been developed in recent years.
Fig. 2 illustrates an uncoupled numerical homogenization
procedure. In the homogenization process, the effective
local elastic constants C*

ijkl(xl) are obtained appearing in a
generalized Hook’s law which, in case of nonlinear mate-
rial behavior, represents tangents at the stress-strain curve.
Uncoupled homogenization methods for inelastic materi-
al behavior are reviewed e.g. in 9, 10, 11. The advantage of
this method is that the effective material properties need
to be determined only once for each load step. For com-
plex nonlinear material behavior, a coupled homogeniza-
tion approach has to be applied. Fig. 3 depicts a scheme
of this method. The effective field variables at each load
step and location (integration point) are obtained by av-
eraging the resulting cell model stress field over the RVE.
For each integration point at the global macro model (see
Fig. 3) the macroscopic strain εmacro

kl is obtained. The value
of the strain in the macro-level (macroscopic strain) must
be equal to the average value of the strain 〈εij〉 in the meso-
level which is obtained by considering the strain averaging
theorem for connected RVE domains similar to Eq. (1)

εmacro
kl =

1
V

∫

V

εmeso
kl dV = 〈εij〉 (4)

with V associated to the volume of the RVE. Employing
Gauss’s theorem, Eq. (4) can be expressed in terms of inte-
grals over the cell model boundary ∂V of an RVE. Similar
to Eq. (2), the integral over the surface of the RVE is ob-
tained, i.e.

〈εij〉 =
1

2V

∫

δV

(uinj + ujni)dA (5)
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Fig. 2 : Scheme of uncoupled homogenization method with point-wise scale separation and effective elastic properties C*
ijkl. Linear rela-

tion between macro-strain 〈εkl〉 and macro-stress 〈σij〉 in terms of material tangents.

Fig. 3 : Coupled homogenization method (meso-macro connection) with point-wise scale separation and macro strain εmacro
kl transformed

on the RVE boundary to obtain the corresponding macro stress σmacro
kl and effective tangent stiffness moduli C*macro

ijkl .

The displacements and strains, respectively, are used to
formulate the boundary conditions to be imposed on the
RVE that is assigned to a specific point. This means, that
the macro strain εmacro

kl is transformed onto the cell model
boundary associated to the relation between strain and
displacement as:

ε11x1 = ui
ε22x2 = u2

2ε12 = u2
x1

+ u1
x2

⎫⎬
⎭

0 ≤ x1 ≤ Lmeso
0 ≤ x2 ≤ Hmeso

(6)

in which ui is the displacement within the RVE where
x1 = Lmeso and x2 = Hmeso supply values at the bound-
aries. Hill-condition postulating the equality of average
and local strain energy densities 2 is satisfied by these con-
ditions. After solving the boundary value problem of the
cell model, the macroscopic stress tensor σmacro

ij and ef-
fective tangent moduli C*macro

ijkl are obtained. Again, one
very important requirement of the scales separation is that
the length scale of the global macroscopic model Lmacro
is much larger than the length of the meso scale or cell

model Lmeso. The main ideas of related homogenization
methods have been established in 12, 13, 14. There are sim-
ilar approaches, e.g. the multi-scale projection method 15

or the FE2 method 16 typically applied to nonlinear prob-
lems with periodic boundary conditions at large deforma-
tions. Trends and challenges of the multi-scale homoge-
nization methods are given in 17.

(2) Damage approach based on analytical cell model
with microcracks

A simple continuum damage model for thermomechani-
cally loaded brittle refractories based on microcrack ini-
tiation and growth has been presented previously in 18.
The material law has been formulated at the macro-level
using appropriate homogenization methods, see section
II(1), and introducing effective material tensors. Within
the framework of continuum damage mechanics, defects
e.g. single cracks with initial length 2a under Mixed-Mode
(σ̄22,σ̄12) and uniaxial (σ̄11) loading are introduced into the
material law as internal state variables. The average strain
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of the microcrack defect phase (〈εij〉)C embedded in an
RVE is defined as 19

〈εij〉C =
1

2A

a∫

-a

(�uinj + �ujni)dx1 (7)

with the displacement jumps �ui and �uj of the infinitely
thin microcrack, respectively, the area of the RVE A and

unit normal vector ni. The ratio
4a2

A
= f will be introduced

as damage variable or crack density parameter. Local fail-
ure occurs if the damage variable reaches the critical value
f = 1. The displacement jumps across the crack faces of the
defect phase are in the most simple approach taken from a
Griffith-crack solution 19, i.e.

�ui(x1) =
4〈σi2〉

E

√
a2 - x2

1 (8)

with Young’s modulus of the matrix material E and the x1-
axis along the crack faces.

The effective inelastic material law for the damaged ma-
terial in terms of a generalized Hook’s law reads:

〈σij〉 = C*
ijkl(f)(〈εkl〉C) or

〈εkl〉M + 〈εkl〉C = (C*
ijkl)

-1(f)〈σij〉
(9)

Here, C*
ijkl is the fourth-order effective elastic tensor and

its inverse (C*
ijkl)

-1 denotes the effective compliance ten-
sor. The average strain of the matrix material is denoted as
〈εkl〉M. Thus, the stiffness of the microcracked RVE is ex-
pressed in terms of an effective elastic tensor including the
damage variable f. In order to properly model the thermo-
mechanical coupling, the temperature dependence of ma-
terial constants is taken into account. The essential thermal
parameters of refractory materials influencing reliability
and lifetime are thermal conductivity λij, thermal expan-
sion aij and specific heat cH, where λij and aij are the most
important ones. Experiments show that the thermal ex-
pansion coefficients and conductivities of refractory ma-
terials depend on voids and thermal shock resistant ad-
ditives 20. Thermally induced stresses are calculated from
Hooke’s law introducing the temperature jump �θ

〈σij〉 = C*
ijkl〈εel

kl〉 = C*
ijkl(〈εkl〉 - α*

kl〈�θ〉) (10)

where εkl is the total strain and εel
kl denotes the elastic strain.

Again, quantities with asterisk (*) denote effective materi-
al tensors or constants. In order to simulate thermal stress,
the temperature distribution in the material is required.
Therefore, the transient thermal field problem

ρ*c*
H

∂〈θ〉
∂t

= λ*
ij

∂2〈θ〉
∂xi∂xj

(11)

is solved first, supplying a time-dependent temperature
field as input data for the mechanical boundary value prob-
lem. Owing to the highly dynamic character of thermal
shocks, inertia forces are included in the momentum bal-
ance:

ρ*〈üi〉 = 〈σij,j〉 (12)

(3) Cell models with cohesive grain boundaries and in-
tercrystalline crack growth

The special attention of this section is focused on RVEs
with multiple grains and cohesive laws on the grain bound-
aries. Fig. 4 depicts an example of such randomly distribut-
ed grains within a volume V with boundary ∂V and outer
unit normal ni.

The dimensions of the RVE are H for the height and L for
the length. This cell model (RVE) of a crystal microstruc-
ture is used for our simulations. In contrast to the previ-
ously presented model of crack distributions in a homoge-
neous matrix, it establishes the influence of the grain size
in our simulations. The RVEs with randomly distributed
grains are created automatically based on a parametric pre-
processing.

Fig. 4 : Representative volume element (cell model) with unit nor-
mal vectors ni representing a polycrystalline material.

In brittle materials, cracks often are initiated and prop-
agate along the interfaces between the crystallites known
as grain boundaries (intercrystalline crack growth) 21.
For the sake of simplicity, the separation process is as-
sumed to be based on bi-linear relationships between in-
terfacial traction and separation displacement. Different
constitutive laws have been used in cohesive zone mod-
els e.g. in Barenblatt’s atomic force attraction law 22, in
Dugdale’s model frequently used for computational frac-
ture research in ductile materials 23, in the cubic model of
Needleman 24 or the bi-linear model of Hillerborg 25. In
Fig. 5 the bi-linear cohesive zone law is shown, which is
used for the RVE modeling. This traction-separation law
allows for computing the relationship between the inter-
face restraining traction rR and the relative grain boundary
displacement d, finally leading to an intercrystalline crack
if the critical displacement dc is attained.

Fig. 6 illustrates a grain boundary interface with all the
relevant quantities. Traction vectors tc and rR are related
by unit normals as

n+(-)
c · σR = t+(-)

c (13)
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The bi-linear cohesive law is described by the following
equation

σR = σc
i

⎧⎨
⎩

(δ(i)/δ0
(i)),

(δ0
(i) - δ(i))/(δ(i) - δ0

(i)),

0<δ(i)<δ0
(i)

δ0
(i)<δ(i)<δ0

(i)

(14)

with index i = n, s for normal and shear separation. To
avoid conflicts with the tensorial index notation requiring
summation over double indices, brackets have been intro-
duced. In our simulations we use uncoupled cohesive laws,
this means, the normal and tangential components of sep-
aration are not interacting. For the normal opening mode
(Mode I) there are two essential quantities, the peak value
of cohesive stress σc

n and the related relative interfacial dis-
placement δ0

n. The condition (σ0
n/δ0

n) is the onset of strain
softening followed by an instable state, finally leading to
crack growth at δc

n. In case of shear opening (Mode II), the
plot in Fig. 5 is qualitatively identical replacing indices n by
s, where σc

s denotes the maximum shear stress at δ0
s . Fig. 7

illustrates schematically a combined normal and shear sep-
aration with relative displacements dn and ds of opposite
boundaries of two grains.

From the J-integral enclosing the cohesive zone, the fol-
lowing relation can be derived 26

Gc =
δ0∫

0

σR(δ)dδ (15)

The area underneath the entire stress-opening curve
(Fig. 5) thus represents the cohesive energy density Gc, i.e.
the total energy per unit surface required to completely
separate the interface at a given point. It can be interpreted
as the fracture energy or in terms of classical linear elastic
fracture mechanics the energy release rate.

Integrating the bilinear function according to Eq. (14)
and Fig. 5, Eq. (15) yields

Gc =
1
2

σc
(i)δ

c
(i) (16)

with index i (i = n, s) for normal and shear sliding traction
separation cases. The cohesive law is thus characterized by
the cohesive energy. In terms of the crack surface energy,
Eq. (16) is converted to

2γc = Gc =
1
2

σc
i δc

i (17)

where cc is the specific fracture surface energy or dissipa-
tive energy owing to material separation 27 originally sug-
gested by Griffith 28. Including the traction vector accord-
ing to Eq. (13), the cohesive law for both normal and tan-
gential separation can be written down as{

tn

ts

}
=

[
Knn Kns
Ksn Kss

]{
δn

δs

}
(18)

K is the stiffness matrix of the cohesive zone and d the rel-
ative displacement for normal and shear loading. Eq. (18)
account for coupling of normal and shear modes, howev-
er, in our investigations these is a strict separation choos-
ing Kns = Ksn = 0. For the cohesive zone modeling be-
tween grains, three parameters have to be selected accu-
rately. First, the stiffness matrix K is taken into account,
describing the gradients of the straight lines for δ < δ0

(i),
see Fig. 5. Second, the fracture displacement δc

(i) is chosen.

Fig. 5 : A bi-linear cohesive zone model relating interface trac-
tion rR and separation displacement d 25.

Fig. 6 : The cohesive restraining stress rR, respective unit nor-
mal vectors n+(-)

c and opening displacement d between two grain
boundaries at an interface with pure normal separation.

Fig. 7 : Separation of opposite surfaces between two grains under
Mode I and Mode II loading conditions with normal and shear
separation (cohesive zone displacement) and local coordinate
system (x1, x2).
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As third parameter, as mentioned before, the cohesive frac-
ture energy or critical energy release rate Gc needs to be
fixed. These parameters determine the effect of intercrys-
talline crack initiation and growth in an RVE.

III. Numerical Examples

(1) Thermal shock damage with analytical cell model
Cyclic thermal shock tests have been simulated numer-

ically on the basis of application oriented problems and
experiments 18, 29. As an example concave, a surface of re-
fractory lining brick was thermally loaded with a local
heat flux density of q̇ = 30 MW/m2. The rest of the model
boundary is assumed to be adiabatic. Fig. 8 shows the pre-
dicted damage pattern in the refractory lining brick after
1, 2 and 3 load cycles, representing states at the ends of the
heating periods. The red zones have to be interpreted as
macroscopic cracks. The thermal load regime is cyclical,
with different durations of constant heat input followed
by breaks of 10 s. It is not noteworthy that damage zones
are initiated below the surface of the specimen, not ap-
proaching its edge before a few load cycles have occurred.

Fig. 8 : FE-simulation of cyclic thermal shock tests with a locally
absorbed surface heat flux q̇ 30 MW/m2, 30 s thermal loading + 10 s
break. Damage zones are indicated in red.

(2) Effective stiffness constants for polycrystalline model
under multiaxial stress state

A cell model (RVE) of a microstructure with randomly
distributed grains (see Fig. 4) is considered for the calcula-
tion of effective elastic constants under multiaxial stresses
in this simulation. Size of the RVE and grains can be se-
lected arbitrarily using a Python script automatically cre-
ating the cell model. The grain boundaries are represent-
ed by polygons. The mesh predominantly consists of 8-
node rectangular elements and is also generated automat-
ically. The bi-linear cohesive law Eq. (14) and the cohe-
sive behavior described in Eq. (18) are implemented along
the grain faces to simulate intercrystalline delamination.
For the grains isotropic elastic behavior is assumed with
Young’s modulus E = 105000 MPa and Poisson’s ratio
m = 0.26. The elastic constants Cijkl for a singe grain can be
defined from these two parameters as

Cijkl =
Eϑ

(1 + ν)(1 - 2ν)
δijδkl +

E
2(1 +ν)

(δikδjl + δilδjk) (19)

with the identity or Kronecker tensor dij.
Numerical simulations have been performed to inves-

tigate crack growth on the meso-scale. Fig. 9 shows the
distribution of intercrystalline microcracks under tensile
and compressive loading conditions. To demonstrate the
principal fracture behavior of polycrystalline materials,
the stiffness of the tangential separation Kss has been cho-
sen ten times higher than that of the normal one Knn. Thus,
the microcrack initiation and propagation predominantly
occurs perpendicular to the maximum principal stresses
in the case of tensile loading σ0

22 see Fig. 9a. In the case of
compressive loading, see Fig. 9b, cracks can only be driven
by shear loading, thus grain boundary separation is pre-
dominantly observed at interfaces which are oriented at
45° or less with respect to the loading axis. This behavior is
typical for brittle materials under compressive loading 30.

Fig. 9 : FE-simulations of intercrystalline microcracks under uniax-
ial loading conditions: a) tensile loading, b) compressive loading..
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Next, effective elastic properties of the polycrystalline
material are determined by means of simulations. Here,
it is important to choose the size of the cell model prop-
erly. An appropriate choice supplies almost isotropic be-
havior, thus requiring a sufficient number of grains in the
RVE. Elastic constants in a classical sense are obtained on-
ly if the point of incipient strain softening, i.e. δ0

(i), is not
reached at any interface. Otherwise, the overall constitu-
tive behavior of the RVE is nonlinear and C*

ijkl have to be
interpreted as incrementally valid material tangents. In the
simulation process, the initial and boundary conditions
need to be defined first. The boundary and loading condi-
tions are shown in Fig. 10. A plane stress assumption was
used for the simulation. The zoomed region shows the FE
mesh. Loading stresses σ0

11 and σ0
22 are variable quantities

enabling the simulation of multiaxial stress states.

Fig. 10 : RVE with arbitrarily distributed grains and boundary/
loading conditions in terms of tensile stresses σ0

11 and σ0
22, zoomed

region shows the FE mesh.

The procedure for the determination of effective elastic
quantities is as follows: we hold e.g. tensile loading σ0

11
constant and vary tensile loading σ0

22. For each pair of ex-
ternal loads the various deformations ε0

ij and displacements
ui at the boundaries of the cell model are obtained. Based
on a Reuss approximation 19 and according to Eq. (4) the
average strain 〈εij〉 for the RVE is determined. As previous-
ly mentioned, a suitable choice of the cell model size leads
to isotropic conditions, thus the stiffness matrix in com-
pressed Voigt notation is simplified as⎡

⎢⎢⎣
σ0

11

σ0
22

σ0
12

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

C*
1111 C*

1122 0

C*
1122 C*

1111 0

0 0 C*
1212

⎤
⎥⎥⎦

⎡
⎢⎢⎣

〈ε11〉
〈ε22〉
〈ε12〉

⎤
⎥⎥⎦ (20)

Eq. (20) represents an isotropic Hooke’s law with the ef-
fective stiffness of a material point on the macroscopic
scale. Once again it should be borne in mind, that Eq. (20)
is valid incrementally for inelastic constitutive behavior. In
order to perform the calculation of effective properties, the
pseudo-inverse can be used to cope with overdetermined
systems of equations.

In Fig. 11, the elastic constant C*
1111 is plotted vs. tensile

loads σ0
11 and σ0

22 It is obvious that the values depend on
the loading state, particularly on the degree of multiaxial-
ity. In these simulations, the tangential separation Kss has

beenchosen1000times largerthanthenormalstiffnessKnn
= 105 N/mm3, thus assuming a more or less pure normal
separation.

Fig. 11 : Effective elastic constant C*
1111 vs. biaxial tensile stress

(Kss = Knn· 103).

In Fig. 12, the 3D plot in Fig. 11 has been cut at differ-
ent values σ0

11 The peaks always occur near states of hy-
drostatic loading. Of course, the plots strongly depend on
the parameters Knn/Kss. Since the results in Fig. 11 and
Fig. 12 are based on arbitrarily chosen Knn/Kss, the out-
comes should be taken as qualitative.

In Fig. 13, the dashed area represents the parameter do-
main σ0

11,σ0
22 of linear behavior, i.e. strain softening initia-

tion δ0
(i) has not occurred at any interface in the RVE. Ma-

terial points on the macro scale, exhibiting principal stress-
es within this area, are allocated the respective elastic con-
stants C*

ijkl. Material points with principal stress states out-
side the dashed domain have to be considered either dam-
aged, if a simplemodel is takenasabasis, orhave tobetreat-
ed within the framework of a coupled two-scale FE simu-
lation.

Fig. 12 : Effective elastic constant C*
1111 vs. σ0

22 for different values
σ0

11.

(3) Coupled two-scale FE simulation
The meso-macro coupling method as depicted in Fig. 3 can
be used to simulate non-linear constitutive behavior and
damage evolution. Damage, in general, is related to the en-
ergy dissipation and irreversible deformation of the con-
sidered brittle material 1, 19. On a continuum scale, dam-
age is characterized by a mathematical entity describing
the ability of momentum transport in a solid body. On
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the atomic scale, it can be defined by a net loss of atomic
bonds 31. In our simulations, based on grain separations
applying a bi-linear cohesive law according to Eq. (14),
failure of an RVE is defined as the state when a few grain
boundary nodes attain a cohesive restraining stress of ze-
ro, i.e. rR = 0. Thus, the separation displacement at the
grain interfaces (compare Figs. 5 and 7) fulfills the condi-
tion δ(i) ≥ δc

(i). Within this context, the damage variable
f is just introduced for the sake of post processing. It is f
= 1, if the above outlined criterion of rapture is met, oth-
erwise the damage variable remains unchanged, i.e. f = 0.
At the macro-scale, the material is assumed to be homoge-
neous, so the properties of the structure are averaged. The
external loading is applied at the macro scale. Cell models
(meso-level) are solved independently for each integration
point. Of course, the two-scale simulation requires an iter-
ative procedure. The solution algorithm for each integra-
tion point at the macro-scale is as follows:
1) Initialization of isotropic material properties for

macroscopic scale. The damage variable is set to ze-
ro. The initiation values of isotropic stiffness Cijkl are
calculated from Eq. (19) for the first iteration.

2) The first iteration step at the macro-level is solved.
3) The macroscopic strain field εmacro

kl is transformed into
equivalent boundary conditions of the cell model in
terms of displacements according to Eq. 6).

4) The meso-level iteration step is solved. After conver-
gence, the condition δ(i)>δc

(i) is verified at each grain
boundary. If the displacement condition is reached at
five nodes, unstable intercrystalline crack growth is
implied and the structure is assumed to be locally dam-
aged. The damage variable for the considered integra-
tion point is set to one (f = 1).

5) If f = 1, the local macro-scale stiffness matrix Cmacro
ijkl

will be multiplied by 10-3, considerably reducing the
stiffness, thus modeling a local rupture. These values
will be kept constant at all others iteration steps. In

the subsequent iterations, this integration point will no
longer be considered.
If f = 0, the average value of the stress on this scale is
computed. The average value of stress at the meso-scale
〈σij〉 is equal to the value of the stress in the considered
point at the macro-scale σmacro

kl For the next macro iter-
ation, the stiffness C*macro

ijkl (effective tangent stiffness)
is determined from Eq. (20) via pseudo inversion.

6) The effective stiffness parameters are passed as solu-
tion-dependent state variables to the macro-model for
the next load step.

Fig. 13 : Area of linear constitutive behavior in the σ0
11 - σ0

22-space.

This simulation process is illustrated in Fig. 14 with the
transformed boundary conditions at the RVE edges. In
Fig. 15 plates under tensile loading and different damage
zones are presented. In a) the tangential stiffness at the
grain boundaries is much larger than the normal separation
stiffness, in b) it is the other way round. As expected, the
damage zones initiate at the notch tip. In the case of large
shear stiffness, the zone develops predominantly in the
notch plane if the load is increased linearly, whereas a large
normal stiffness fosters the formation of two paths under
45°.

Fig. 14: Principle of macro-meso coupling: plate under tensile loading (macro level) and cell model/RVE with microstructure consisting
of grains (meso level).
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Fig. 15 : Notched plate under tensile loading, a) Kss = Knn·103, b) Knn = Kss·103. Two states of damage evolution.

Fig. 16 : Plate under compressive loading (Knn = 100000, Kss = 1000000 N/mm3) at part of boundary and damage progress.

In Fig. 16 a plate under linearly increasing compressive
loading is considered. The load σ0

22 only acts at a part of
the upper edge. Damage is initiated both at the singular
points at the line load corners and underneath the surface.
Damage within the structure increases rapidly if the load
is increased.

IV. Conclusions

Damage in brittle materials has been modeled based on
two-scale considerations incorporating cracks and imper-
fect grain boundaries. Both analytical-numerical and pure
numerical approaches are presented. Debonding of grain
boundaries is described applying cohesive models in con-
nection with bi-linear separation laws. The results pro-
vide evidence that promising numerical tools have been
developed for the prediction of damage evolution un-
der mechanical and thermomechanical loading. Howev-
er, some results may still be interpreted just qualitatively.
Further research will have to supply more realistic materi-
al properties concerning the separation behavior of grain
boundaries.
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