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Abstract
Multiscale modeling of crack propagation in homogeneously heated aluminium oxide is presented. It is known that

the crack propagation velocity depends on both the bulk modulus and surface energy of a material. The temperature
dependence of surface energy is often ignored owing to the difficulty associated with obtaining a reliable measurement.
Such dependence was calculated in atomic-scale calculations by means of Molecular Dynamics with MEAM potential.
The dependence shows a linear decrease with an increase in temperature. The MD results are used as input for phase
field simulations of fracture. It is shown that if only the temperature dependence of the bulk modulus is taken into
account the crack velocity decreases by 30 %. However, only a 2 % decrease is observed when both the temperature
dependence of surface energy and bulk modulus are considered.
Keywords: Fracture mechanics, fatigue and cracks, high-temperature ceramics, computational methods in continuum mechanics, multi-
scale modeling

I. Introduction
Owing to the resulting high thermal shock resistance,

carbon is used in more than 40 % of all refractories
worldwide to adjust their thermomechanical and chem-
ical properties. For the development of ‘cleaner’ high-
temperature ceramics and the consequential avoidance of
carbon it is essential to understand how other materials
can be tailored to reach comparable thermal shock resis-
tance even when exposed to today’s higher thermal shock
stresses.

a Aluminium oxide (corundum) is one such promising
refractory material with a melting temperature of 2000 K
and fracture toughness of 2.30 MPa×m1/2 13. While its
elastic properties and critical tensile strain have been de-
termined effectively 13, little is known about damage evo-
lution in this material. Crack growth in alumina can be
either hindered or promoted by the presence of various
additives. For example, water is found to trigger subcrit-
ical crack growth with a rate of 1013 m/s 16, while iron
additives increase its fracture toughness 25.

On atomic level, cracks are created by the breaking of
bonds resulting from either an applied load or a chemi-
cal reaction. The resulting nano-cracks interact with each
other and then propagate to the macroscale. Such pro-
cesses cannot be described with mesocale methods as
continuum mechanics breaks down on the nano-scale 18.
Thus damage evolution is a multiscale process which re-
quires comprehensive understanding of crack propaga-
tion in alumina on both atomic scale and macroscale.
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The fundamental basis of today’s understanding of the
fracture phenomenon is traced back to Griffith 10, who re-
alized that the growth of cracks is determined by a compe-
tition of a release of elastic energy and a simultaneous in-
crease of the surface energy owing to the advancing crack.
Since this time, the motion of a crack has been relative-
ly well understood in the framework of continuum the-
ories 6, 9. The crack is treated as a front or interface sepa-
rating broken and unbroken regions of the material and its
propagation is governed by the balance of the elastic forces
in the material and cohesive stresses near the crack 1, 2, 14.

On the other hand, both elastic and surface energies are
dependent on both the crystal structure of the materi-
al and its chemical composition, and can be determined
with either quantum mechanical methods such as Density
Functional Theory (DFT) or classical Molecular Dynam-
ics (MD) where empirical potentials mimic the covalent
bonding. DFT 15 is based on the solution of Schrödinger-
like equations for electrons and accurately describes the
electronic structure of the material from first principles.
However, this method is both computationally demand-
ing and is only applicable at 0 K. In contrast, Molecular
dynamics is based on the solution of Newton equations
for atoms moving in external potential, where temperature
can be easily introduced via external kinetic energy. This
allows consideration of systems consisting of millions of
atoms, which is important for crack propagation model-
ing. The accuracy of such calculations requires sophisticat-
ed fitting of the interatomic potential parameters to known
material properties.
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In this paper we report on the multi-scale modeling of
crack propagation in homogeneously heated alumina. For
this purpose Molecular Dynamics with Modified Embed-
ded Atom Method (MEAM) 7, 20, 28 interatomic potential
was chosen, as this potential is partly derived from the
DFT method. The potential parameters were fit to cor-
rectly reproduce the lattice constants and elastic moduli of
alumina. Then, the temperature dependence of the surface
energy was calculated and the results obtained were used
as input for phase field simulations to study crack growth
under mode I loading with a temperature gradient created
along the crack propagation direction.

II. Molecular Dynamics Calculations of Surface Ener-
gy

Surface energy is defined as half the energy needed to
separate a material into two pieces, this quantity defines
the critical strain energy needed to facilitate crack growth.
Calculating the surface energy with atomistic simulations
is particularly handy when experimental data is not avail-
able. Since atoms inside the crystal are more tightly bound
to each other than atoms at the surface, a system with a
surface will have lower energy than periodic bulk crystal.
The difference between two energies will give us the sur-
face energy as defined in 12, 19:

γ =
Efracture

total - NatomsEbulk
total

2SA
(1)

where Etotal
fracture is the calculated total energy of frac-

tured material with two surfaces separated (as shown in
Fig. 1), SA is the surface area, Natoms is the number of
atoms in the fractured material and Etotal

bulk is per atom
bulk energy of undistorted alumina crystal (where two
surfaces are together).

Total energies in these two calculations are obtained as a
sum of kinetic energy and pair interaction energy which is
determined by interatomic potential:

Etotal = Epair + Ekinetic (2)

For the pair interaction energy the Modified Embedded
Atom Method (MEAM) was used, in which it is calculated
with the following equation 3, 7:
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where Vij(rij) is a pair interaction potential between atoms
i and j, Fi is the embedding function, which depends on the
background electron density ρi

28:

Fi = Ai E0
i ρi ln ρi (4)

Here Ei
0 is cohesive energy, which is calculated either by

experiment or with DFT calculations, Ai is an adjustable
parameter.

While in the original EAM method the electron density
ρi depends only on the bond length, the Modified Embed-
ded Atom Method (MEAM) 3, 4 includes the angular de-
pendence of the background electron density, which de-
scribes covalent bonding more correctly 28:
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Fig. 1: Simulation boxes for surface energy calculations: (a) frac-
tured system with two separated surfaces (marked in blue), its en-
ergy will be Etotal

fracture; (b) bulk crystal with two surfaces com-
bined, its energy per atom will be Etotal

bulk. From these calculations
surface energy is then obtained via Eq. 1.

As periodic boundary conditions were applied in this
simulation, the vacuum between two separated surfaces
was chosen to be 32.9 Å, which prevents the surfaces from
interacting with each other.

The pair interaction potential Vij from Eq. 3 depends
on parameters that are calculated for reference structures
(fcc Al in case of i = j = Al and Al-O dimer for VAlO and
i = j = O) from Rose equation of state (see Eq. 15 in 17). We
have used the one implemented in LAMMPS software 23.
This allows the complex structure of covalent bonding to
be taken into account.

The calculations were performed for hexagonal (R3c̄)
a-Al2O3 with lattice constants a = b = 4.761 Å and
c = 12.993Å, and angles a = b = 90° and γ = 120°. The start-
ing point of our calculations were the parameters for Al
and O by Baskes 4, while the three remaining ones (cut-
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off distance, attraction and repulsion parameters) were
adjusted as described in 22 to reproduce melting tempera-
ture, lattice constants and elastic moduli.

The microcanonical (NVE) ensemble was used in our
simulations with simulation time equal to 1000 time steps
(1 ps), the temperature was kept constant during the simu-
lation run. The resulting temperature dependence of the
surface energy is shown in Fig. 2. While the interatomic
potential was not tested to reproduce correct surface en-
ergies, it gives reasonable results for temperatures up to
1500 K. Above this temperature the surface energy cannot
be calculated from Eq. 1 owing to slow solid-liquid phase
transition.

Fig. 2 : Temperature dependence of the surface energy of Al2O3
(010) surface. Dashed line shows the linear fit.

The obtained temperature dependence of the surface en-
ergy serves as a starting point for phase field simulations
of crack growth.

III. Phase Field Model
In our fracture model, which is based on linear theory of

elasticity 5, 8, 26, 27, the crack has a finite tip radius r0 = h,
while in classical descriptions, the tip is treated as a singu-
lar point followed by a mathematical cut. The finite tip size
of the crack implies that the volume inside the crack is also
finite, and a description of this inner ‘phase’ is necessary.
The crack shape in the model is not an input parameter,
but it is determined self-consistently with the equations of
motion. In this respect, the crack description differs signif-
icantly from classical models of fracture, where only equa-
tions of motion for the singular crack tip have to be postu-
lated. The advantage of such a description is that the entire
crack shape is a degree of freedom for the model. There-
fore not only the advance of the crack itself is described,
but also deformations of the crack contour behind the tip,
and path selection is automatically contained.

We assume a two-dimensional plane strain situation and
mode I loading, which means that the applied tensile forces
act perpendicularly to the crack. On the crack contour
the normal components of the stresses have to vanish, i.e.
σnn = σnτ = 0. These boundary conditions should be posed
on the crack interface, which is not known in advance since
it is the degree of freedom in our model.

The phase field method provides a powerful tool to solve
such kinds of free boundary problems. The basic idea is

to introduce a continuous auxiliary field U (phase field),
which will discriminate between the different material
states. We define U= 1 for the elastic medium, and U= 0 for
the ‘broken phase’ with vanishing elastic moduli. Then the
phase field value U= 0.5 corresponds to the crack interface.
Interpolation of the elastic constant between the two phas-
es ensures that the boundary conditions are automatic ful-
filled. It is only necessary to couple the additional phase
field evolution with the force balance equation:

∂σ(el)
ij

∂xj
= 3α(3λ+2μ)

∂T
∂xi

, (6)

where k and l are Lame constants, and a is the thermal ex-
pansion coefficient. To derive the time evolution equation
for the phase field we start from a free energy functional 14:

F [φ,ui] =
∫

v

(fs + fdω + fel) dV, (7)

where fs(∇φ) = 3γξ(∇φ)2/2 is the gradient energy density
and fdω(φ) = 6γφ2(1-φ)2/ξ is the double well potential, guar-
anteeing that the free energy functional has two local min-
ima at φ = 0 and φ = 1 corresponding to the two distinct
phases of the system. The form of the double well poten-
tial and the gradient energy density are chosen such that
the phase field parameter n defines the interface width and
the parameter n corresponds to the interface energy of the
sharp interface description 11. Finally, the elastic energy
density contribution is given by

fel = f0(T) - K(φ) α(T-T0)ε2
ij

+
K(φ)

2
(εii)2 - μ(φ)(εij -

1
3

δijεkk)
(8)

where K(U) is a bulk modulus. The first term corre-
sponds to the pure thermal contribution to the free en-
ergy f0(T) ∼ T2. The phase field dependences of elastic
moduli are given by following expressions

μ(φ) = h(φ) μ + (1 - h(φ)) μ[b],

K(φ) = h(φ) K + (1 - h(φ)) K[b],

where l,K and l[b], K[b] denote the bulk values of the mod-
uli of the elastic medium and the ‘broken phase’, respec-
tively. The function h(φ) = φ2(3 - 2φ) provides an interpo-
lation of the elastic modulu s between zero for the ‘broken
phase’ and one for the elastic medium. It is the simplest
polynomial satisfying the necessary interpolation condi-
tions h(0) = 0 and h(1) = 1 and having a vanishing slope at
φ = 0 and φ = 1, in order not to shift the bulk states. The
elastic stresses then are defined as the derivative of the
elastic free energy density with respect to the strains, i.e.
σ(el)

ik = δfel/δεik. Finally the dissipative phase field dynam-
ics obeys the following equation

∂φ
∂T

=
D

3γξ

(
δF
δφ

)
(9)

where D is the kinetic coefficient.
At this stage in order to test our approach on multi-

scale simulations. we performed a simulation of a temper-
ature-driven fracture in homogeneous media. The temper-
ature profile was fixed during the simulation and crack was
propagating towards to the region of high temperature.
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IV. Results and Discussion
In our previous work crack propagation under mode I

loading was considered. The presence of an inhomoge-
neous temperature field leads to inhomogeneity of the ma-
terial properties and causes the bulk forces proportional
to its gradient. Typically the bulk modulus decreases with
the increase of temperature, regions of the material with
high temperature having a lower elastic modulus. If we ap-
ply tensile forces to such a sample with inhomogeneous
distribution of temperature, the regions of lower temper-
ature and consequently lower elastic moduli can effective-
ly stop crack propagation. This is similar to the situation
in composite materials with inclusions in the hard matrix
elements with lower elastic modulus. At coherent inter-
faces, the elastic displacement field is continuous through
the weak inclusion, therefore the elastic energy stored in
the inclusion is not enough to initiate crack growth. But
with the increase of temperature the surface energy also
decreases. Moreover the Griffith point is inversely propor-
tional to surface energy. Thus, the Griffith point or ener-
gy required to initiate unstable crack growth is nonlinear
in dependence on temperature. And a decrease of the elas-
tic modulus in the region of high temperature hindering
crack propagation can be reversed by a decrease of surface
energy, which shifts the elastic energy required for crack
growth to a lower value.

To model this complicated temperature dependence, as
well as to demonstrate the coupling of the phase field sim-
ulation with MD, the velocity of crack propagation under
mode I loading in a constant gradient temperature field has
been performed.

The temperature field does not change during the sim-
ulation and linearly increases from the left boundary of
computational domain (T = 20 K) to the right boundary
(T = 1400 K). The crack starts to growth in a region of high
elastic moduli and ends in the region of lower elastic mod-
uli. The temperature dependence of the elastic moduli has
been expressed in the following form 21:

E(GPa)= 417 – 0.0525T

G(GPa) = 169 – 0.0229T
(10)

while the temperature dependence of the surface energy
was obtained by means of MD simulation:

γ = 3.64 – 0.00032T (11)

First we measure the steady state crack velocity under
pure mode I loading without creation of a temperature gra-
dient in the system, i.e. the sample has a uniform tempera-
ture T = 20. Next we modulate only the bulk modulus, cre-
ating a constant temperature gradient in the system. The
relative decrease of the crack propagation velocity com-
pared to the uniform temperature distribution was about
30 %. This relative crack propagation velocity reduction
is proportional to the decrease of the bulk modulus. As a
next step the temperature dependence of the surface en-
ergy obtained by means of MD simulation was taken in-
to account. In this case the velocity reduction was about
2 % which is comparable to the numerical accuracy of our
computation. Thus, careful calculations of the bulk mod-
ulus and especially the surface energy are required to ful-

ly capture the crack propagation features in the inhomo-
geneous temperate field, which is important for deriving
a quantitative mechanism for crack propagation and thus
improving design principles for crack-resistant ceramics
as indicated above.

V. Conclusion

In conclusion, we have elucidated a scale bridging ap-
proach in its simplest form for modeling crack propaga-
tion under thermal and mechanical loading. Results of the
obtained classical MD calculations, which give the temper-
ature dependence of the surface energy, were used as in-
put for phase field simulations at the microscale. The lat-
ter simulations were used for modeling crack propagation
under mode I loading in an inhomogeneous temperature
field. The temperature dependence of both the bulk mod-
uli as well as of the surface energy plays a crucial role for
the dynamics at that scale, as we could demonstrate in our
simulations in the following manner: If only the tempera-
ture dependence of the bulk moduli is taken into account,
the crack will encounter large deceleration of about 30 %
in the high-temperature region. The addition of a surface
energy temperature dependence as obtained by MD cal-
culations changes the situation completely. The crack ve-
locity is then still reduced, however, only by a few per-
cent. Thus, in order to enhance our understanding of the
mechanisms behind the crack propagation dynamics ob-
served in ceramic refractories such precise multiscale mod-
els coupling physics from the nano- and microscale are
required. Only these allow us to precisely predict micro
crack propagation velocities for general material compo-
sitions, fillers and parameter regimes. We expect possibly
yet more quantitative results from the consideration of
further relevant parametric dependences from the atom-
ic scale, which might need to be taken into account as a
crucial factor at the microscale. Such advanced multi-scale
approaches can thus be developed only in close compari-
son to advanced experimental studies, which allow access
to the quality of our model developments in detail.
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