Review Formation, Decomposition and Thermal

Stability of Al_2TiO_5 Ceramics

I.J. Kim^{*1}, L.G. Gauckler²

 ¹Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University, 360 Haemi-Myun, Seosan City, Chungnam 356–820, Republic of Korea.
 ²Non-Metallic Inorganic Materials, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Strasse 10, CH 8093 Zurich, Switzerland.
 received December 11, 2011; received in revised form March 28, 2012; accepted May 10, 2012

Abstract

The thermal instability of Al_2TiO_5 can be mitigated using solid solutions of MgO, Fe_2O_3 , TiO_2 , and ZrO_2 in the Al_2TiO_5 lattice or grain boundary solutions with additives such as SiO_2 , ZrO_2 , $ZrTiO_4$, or mullite, most of which do not form solid solutions with Al_2TiO_5 but rather restrain the tendency of Al_2TiO_5 toward decomposition. The additives SiO_2 and ZrO_2 do not have a significant effect on the thermal stability of Al_2TiO_5 , even after long annealing at the critical temperature of 1100 °C. Mullite retarded decomposition and increased thermal stability between 750 and 1300 °C. Literature regarding the formation, decomposition and thermal stability of Al_2TiO_5 ceramics with different inorganic materials exhibiting thermal expansion and excellent thermal shock resistance is discussed with regard to the application of the materials at high temperature, especially as diesel particulate filters.

Keywords: Al₂TiO₅, formation, decomposition, low thermal expansion, thermal stability, thermal shock-resistant, raw materials

I. Introduction

Aluminum titanate (Al₂TiO₅)-based ceramics are used as excellent thermal-shock-resistant, corrosion-resistant, and insulating materials because of their low thermal conductivity, low thermal expansion, and low Young's modulus. However, they exhibit low mechanical strength. Pure Al₂TiO₅ tends to decompose into Al₂O₃ and TiO₂rutile at 750 – 1300 °C, which greatly hampers its industrial application, while Al₂TiO₅ ceramics can be made suitable for use as insulating material in engine components such as port liners, piston bottoms, turbochargers, and DPFs, etc. 1-3. The material's low mechanical strength is due to microcracks induced by the high anisotropy of its thermal expansion coefficients, which are -3.0, +11.8 and $+21.8 \times 10^{-6}$ /K in each of its three crystallographic axes ^{4,5}. The crystal structure of β -Al₂TiO₅ is of pseudobrookite type with a theoretical density of 3.70 g/cm³. The densities of the starting oxides are 3.99 and 4.25 g/cm³. Therefore, reaction (1) is accompanied by an 11-% molar volume increase ^{6,7}.

$$\alpha - \text{Al}_2\text{O}_3 + \text{TiO}_2\text{-}_{\text{Rutile}} \rightarrow \beta - \text{Al}_2\text{TiO}_5 \tag{1}$$

The decomposition of pure Al₂TiO₅ into Al₂O₃ and TiO₂ occurs below the equilibrium temperature, which has been reported to be 1300 °C (Lang, 1952)⁵³, 1237 \pm 10 °C (Kim, 1960)⁷, 1200 °C (Goldberg, 1968)⁵⁴, and 1280 °C (Kato, 1980) ⁸. This decomposition occurs when adjacent Al³⁺(0.54 Å) and Ti⁴⁺ (0.67 Å) octahedra collapse because the lattice sites occupied by the Al³⁺ions are too large ^{10, 11}. The thermal energy available from this collapse allows Al³⁺ to migrate, resulting in structural dissolution to rutile (TiO₂) and corundum (Al₂O₃) ¹². After decomposition, the material exhibits neither a low thermal expansion coefficient nor favorable thermal shock behavior, rendering it useless for high-temperature applications ¹³.

II. Formation and Decomposition of Al_2TiO_5 Ceramics

Most studies of $Al_2 TiO_5$ systems concern the high-temperature preparation of these materials from oxide powders. In this conventional processing, the reactions between the oxides to complete reaction are not sufficiently fast ^{14, 15}. Therefore, pre-synthesis processes have been developed, incorporating the use of stabilizers ^{16, 17}, electrofused powders ^{54, 18}, sol-gel methods ^{19–22}, semi-solgel methods ^{23, 24}, and CVD ^{25, 26}, to produce mainly uniform Al₂TiO₅ phases.

$$\alpha - \text{Al}_2\text{O}_3 + \text{TiO}_2(\text{rutile}) \rightarrow \beta - \text{Al}_2\text{TiO}_5^{27-29}$$
(2)

$$\alpha - \text{Al}_2\text{O}_3 + \text{TiO}_2(\text{anatase}) \rightarrow \beta - \text{Al}_2\text{TiO}_5 \,{}^{30-32} \tag{3}$$

$$\gamma$$
-Al₂O₃ + TiO₂(rutile) $\rightarrow \beta$ -Al₂TiO₅³³ (4)

$$\alpha - \text{Al}_2\text{O}_3 + \text{TiO}_2(\text{amorphous}) \rightarrow \beta - \text{Al}_2\text{TiO}_5 \,{}^{34,35} \tag{5}$$

Corresponding author: ijkim@hanseo.ac.kr

$$Al_2O_3(\text{amorphous}) + \text{TiO}_2(\text{amorphous}) \rightarrow \beta - Al_2\text{TiO}_5^{-8,36-42}$$
(6)

$$AlBr_3 + TiCl_3 \rightarrow \beta - Al_2 TiO_5 {}^{25,26}$$
(7)

The formation of Al₂TiO₅from individual oxides occurs at over 1200 °C as a result of solid-state reactions of the crystalline components 40-42. The formation of Al₂TiO₅ can be achieved at low temperature, at over 600 °C via non-hydrolytic synthesis 43 and at approx. 800 °C using alkoxides stabilized with acetylacetone 44. Acid-catalyzed solutions of aluminum and titanium alkoxides have been used to synthesize Al₂TiO₅ films at approx. 700 °C⁴⁵. These low-temperature formations are attributed to a diffusion-limited crystallization process, which takes place in conditions of high homogeneity reached in the material at the molecular level ¹⁹. The molar free energy of Al₂TiO₅ formation can be estimated with a third-law treatment of the available heat capacity and the equilibrium temperature; it has been confirmed experimentally 28, 46.

$$\Delta G^{\circ} = \Delta H^{\circ} - \Delta S^{\circ} T [Gibbs - Helmholtz]$$
(8)

with: ΔG = free enthalpy of reaction

 $\Delta H = enthalpy$

$$\Delta S = entropy$$

 $\Delta G^{\circ} = \Sigma \Delta G^{\circ}_{\text{pro.}} - \Sigma \Delta G^{\circ}_{\text{react}} = 0, \text{ equilibrium}$ (9)

$$\Delta G^{\circ}_{T} < 0$$
: The product is stable (10)

$$\alpha - \text{Al}_2\text{O}_3 + \text{TiO}_2(\text{rutile}) \rightarrow \beta - \text{Al}_2\text{TiO}_5$$
(11)

$$\Delta G = G_3(Al_2TiO_5) - G_2(TiO_2, rutile) - G_1(\alpha - Al_2O_3)$$
(12)

$$G_3(Al_2TiO_5) = \Delta H^\circ - \Delta S^\circ T$$
(13)

$$\Delta G^{\circ} = -3.20 - 12,89 \cdot 10^{-3} \,\mathrm{T \, kJ/mol}$$
[Barin-Knacke^{28, 47–50}] (14)

In general, above 1280 °C additive reaction takes place in an oxidizing atmosphere resulting in the formation of Al₂TiO₅ as in Eq. (1) and it is only thermodynamically stable above 1280 °C and undergoes a eutectoid-like decomposition to α -Al₂O₃ and TiO₂(rutile) within the temperature range of 900 – 1280 °C. The eutectoid decomposition occurs at 1280 °C (equilibrium), but takes place upon undercooling ^{7–12, 28}. β -Al₂TiO₅ has a pseudobrookite crystal structure with an orthorhombic lattice with a *Cmcm* space group, with the following lattice constants: a = 0.3591 nm, b = 0.9429 nm, and c = 0.9636 nm ^{4, 8, 16}. The molar free energy of the Al₂TiO₅ formation can be estimated with a third-law treatment of the available heat capacity data and the equilibrium temperature and it has been confirmed experimentally (Fig. 1).

$$\Delta G^{\circ} = 17.00 - 10.95 \cdot 10^{-3} T \text{ kJ/mol}$$
[Freudenberg and Mocellin¹⁶] (15)

$$\Delta G^{\circ} = 14.68 - 12.76 \cdot 10^{-3} \text{ T kJ/mol}$$
[Kubaschewski⁵¹] (16)

$$\Delta G^{\circ} = 13.39 - 8.049 \cdot 10^{-3} \text{T kJ/mol} [\text{Knacke}^{52}] \qquad (17)$$

Where $\Delta T = T-1553(K)$ in Eq. (2). The endothermic reaction is feasible because of the positive entropy contribution, ΔS° , which is of similar magnitude to that of isotypic pseudobrookite phase with entropy contributions from cation disorder oxygen vacancies. The positive entropy might be further enhanced through additional entropy of mixing, upon the formation of Al₂TiO₅ solid solution containing Mg²⁺, Fe³⁺, or Cr³⁺, which provide a lower decomposition temperature, i.e. increased stability.

Fig. 1: Free energy ΔG of Al₂TiO₅ from α -Al₂O₃ and TiO₂^{54, 90}.

Eqs. (2), (3), and (4), show that the stable temperatures of the products were 1280, 877, and 1356 °C, respectively ^{16, 51, 52}. However, pure Al₂TiO₅ can reversibly decompose into α -Al₂O₃ and TiO₂ (rutile). This thermal behavior of Al₂TiO₅ is due primarily to the complex system of internal stresses and fractures that develop in the material during cooling from elevated temperatures, and thus are the result of the anisotropic thermal expansion properties of individual grains which form the bulk of Al₂TiO₅ ceramics ^{4, 10}.

Many equilibrium temperatures of pseudobrookite-type crystals related to this have been reported, e.g. 1237 °C and 1200 °C as lower limits at which β -Al₂TiO₅ is stable above 1356 °C (Table 1) ⁵³. In addition, Lang *et al.* reported the existence of two allotropic forms of Al₂TiO₅, which they termed β or low-temperature- and α or high-temperature-modifications ⁵⁴. Lejus and Goldberg compared different Al₂O₃-R₂O₃ systems and discussed new phases formed in the Al₂O₃-TiO₂ system during reduction by H₂ and C at high temperatures ⁵⁵. This temperature can be modified with the use of additives for increased stability of Al₂TiO₅ ceramics during cooling.

 Table 1: Decomposition temperature of pseudobrookite-type crystals ^{8,53}.

Crystal	Name	Decomposition temperature	Decomposition phase
Fe ₂ TiO ₅	pseudobrookite	585 °C	rutile + hamatite
Al ₂ TiO ₅	tialite	1280 ± °C	rutile + corundum
MgTi ₂ O ₅	karrooite	620 °C	rutile + geikielith
FeTi ₂ O ₅	ferropseudo- brookite	1140°C	rutile + ilmenite

This β -Al₂TiO₅ is stable from room temperature to 750 °C and from 1200 °C up to the inversion tempera-

ture at 1820 °C. The α -Al₂TiO₅ form is thermodynamically stable from 1280 °C to the melting temperature (T_m = 1860 °C). In general, below 1280 °C, it decomposes into the parent oxides α -Al₂O₃ and TiO₂ as the result of an eutectoid reaction; the decomposition rate is very low, below about 800 °C ^{51–53,56} (Fig. 2).

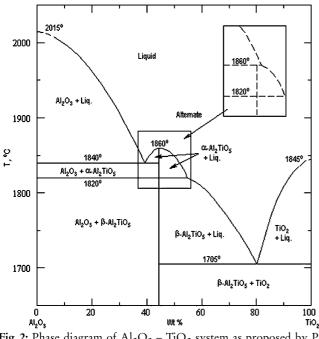


Fig. 2: Phase diagram of Al_2O_3 – TiO_2 system as proposed by P. Pena and S. DeAza ⁵⁵.

The decomposition of both sintered and powdered Al₂TiO₅ has been widely studied ⁵⁷, and its nucleation and growth reaction kinetics can be described with the Avrami model ⁵⁸. However, Hennicke and Lingenberg suggested that the decomposition occurred via metastable phases, the most likely of which being annosovite (Ti₃O₅), which is known to exhibit a complete range of solid solutions with Al₂TiO₅ ⁵⁹. The following mechanism was proposed as the most likely explanation of the decomposition of Al₂TiO₅:

$$Al_{2}TiO_{5} = [(Al_{2}TiO_{5})_{1-3x} (Ti_{2}TiO_{5})_{x}] + x/2+3_{x}Al_{2}O_{3}$$
(18)

This mechanism fitted microstructural observations that showed the formation of small, irregular, Al_2O_3 particles and the appearance of small intracrystalline pores, as would be produced by gas evolution (e.g. O_2).

The decomposition is quickest between 1100 and 1150 °C, reaching completion within 5-50 h, depending on the average grain size and annealing time above the decomposition temperature. Considering the nucleation of a single grain, Kato derived a kinetic equation to fit the two regions of decomposition. It describes an early acceleration period, where the kinetics follow 9, 56, 57:

$$t \leq \tau: \quad \alpha = -\frac{1}{\kappa\tau} - [\kappa t - (1 - e^{-\kappa t})]$$
(19)

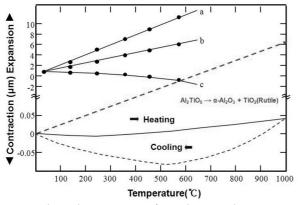
and a subsequent "deceleration period":

$$t \ge \tau$$
: $\ln(1-\alpha) = \ln\left[-\frac{1}{\kappa\tau} - (e^{-\kappa\tau} - 1)\right] - \kappa t$ (20)

where α is the fraction decomposed, t the decomposition time, k is the nucleation time constant, and τ is the average time for decomposition to initiate and complete in one grain.

The decomposition of Al₂TiO₅ can be controlled with the addition of MgO or Fe₂O₃, which leads to solid solutions Al₂TiO₅ and isostructural MgTi₂O₅ or Fe₂TiO₅ during sintering. The stabilization is due to the improved thermodynamic stabilities of MgTi₂O₅ and Fe₂TiO₅ over Al₂TiO₅. MgTi₂O₅ decomposes to MgTiO₃ + TiO₂ below 700 °C ⁵⁵, and Fe₂TiO₅ decomposes to Fe₂O₃ + TiO₂ at 565 °C, (Table 1) ⁵⁹.

(1) Thermal expansion behavior


Most ceramics expand on heating, as a result of the thermal agitation of atoms, which increases their bond lengths. However, some anisotropic thermal expansion ceramics contract on heating. Upon heating, these structures will expand and contract in their various dimensions ⁶⁰, making them susceptible to microcracking during the heating cycle. This thermal behavior is characterized by hysteresis loops and by much lower thermal expansion coefficients than in dense ceramics ^{4, 61}. As near-zero thermal expansion can minimize thermal stress, much effort has focused on developing low-expansion materials for severe thermal shock applications^{12, 62}.

Al₂TiO₅ is highly anisotropic ($\Delta \alpha_{max}^3 = 22.0 \cdot 10^{-6}/K$). Therefore, despite its average crystallographic thermal expansion being slightly higher than that of alumina ($\alpha_{-Al_2O_3, 25-1000^\circ C} = 8.7 \cdot 10^{-6}/K$, $\alpha_{-Al_2TiO_5, 25-1000^\circ C} = 9.7 \cdot 10^{-6}/K$)^{5 - 8, 63, 64}, high compressive residual stresses on Al₂TiO₅ grains are expected to develop during cooling from the sintering temperature, at least for some grain-matrix crystallographic orientations. Consequently, Al₂TiO₅ grains may act as bridges during fracture ^{65, 66}. Microcracking may also occur as a result of fractures caused by the residual stresses. The positive effects of thermal treatment and thermal expansion behavior are due to microcrack systems at the grain boundaries of Al₂TiO₅ ceramics.

The high thermal expansion of Al_2TiO_5 single crystal (9.70 × 10⁻⁶/K) and the low thermal expansion of sintered Al_2TiO_5 ceramics (Fig. 3) are due to the effects of grain boundary microcracking caused by the high anisotropy of thermal expansion along the crystal axes of Al_2TiO_5 . During reheating, individual crystallites expand at low temperature and the solid volume expands into microcracks, leaving the macroscopic dimensions relatively unchanged.

As a result, the material expanded slightly up to 1000 °C and the microcracks closed at higher temperatures. This is closely related to the relatively steep thermal expansion curves $^{6,35-37, 67, 68}$, which are ascribed to the mechanical closing of microcracks on heating to >800 °C and their reopening that occurs on cooling below 900 °C

The ESEM images show microcracks of 362-448 nm between grain boundaries at $28 \,^{\circ}$ C (Fig. 4). Sintering at 597 $^{\circ}$ C reduced their lengths to 310-429 nm, and the specimens exhibited negative thermal expansion. Sintering at 911 $^{\circ}$ C allowed individual Al₂TiO₅ crystallites to expand into the microcracks, and the macroscopic dimensions remained nearly unchanged. The microcracks were closed upon sintering at 1351 $^{\circ}$ C; however, at still higher temperatures, the expansion coefficient ($1.09 \cdot 10^{-6}$ /K for ATM1) was far below the theoretical value of single-crystal Al₂TiO₅ (9.70 $\cdot 10^{-6}$ /K.), suggesting that a large proportion of the microcracks were still open. The reopening of the cracks led to the thermal hysteresis during cooling on the third run ⁶⁹.

Fig. 3: Thermal expansion of single crystal (top), sintered Al_2TiO_5 (bottom), and fully decomposed pure Al_2TiO_5 into Al_2O_3 and TiO_2 (red dotted line).

In an attempt to improve the mechanical strength and thermal stability (800-1300 °C) of Al₂TiO₅, a new thermal-shock-resistant material consisting of a two-phase material based on Al₂TiO₅-mullite in different proportions was investigated by reducing the particle size ($0.3 \sim 0.5 \,\mu$ m) for adjusting the Al₂O₃/SiO₂/TiO₂-ratios to form the main phase of Al₂TiO₅-mullite content 10 vol% for ATM, 20 vol% for ATM2, 30 vol% for ATM3, and 50 vol% for ATM5, respectively ²⁴.

All ATM composites exhibit reduced thermal expansion coefficients with increasing Al_2TiO_5 content, accompanied by large hysteresis areas (Fig. 5). ATM materials show low thermal expansion up to 700 °C. However, temperature hysteresis increases when the temperature rises further.

This was attributed to the mechanical filling of the microcracks as the temperature was raised above 900 °C, and the re-opening or refracturing of the cracks upon cooling <730 °C. Even at 1000 °C the slope of ATM1 sintered at 1600 °C remained flat, i.e. zero thermal expansion during heating, suggesting that a significant proportion of the microcracks remained open (Fig. 5). The thermal expansion coefficients at increasing temperature from 20 to 1000 °C of ATM materials sintered at 1600 °C for 6 h were 1.09 · 10⁻⁶/K for ATM1, 2.50 · 10⁻⁶/K for ATM2, 4.06 · 10⁻⁶/K for ATM3 and 5.48 · 10⁻⁶/K for ATM5 ^{37, 70}.

All ZrTiO₄-Al₂TiO₅(ZAT) composites with increasing Al₂TiO₅ content exhibit reduced low thermal expansion coefficients accompanied by a pronounced large hysteresis area as shown in Fig. 6. The ZAT5 materials sintered at 1600 °C for 2 h showed negative thermal expansion up to 600 °C, but when the temperature was further increased, the thermal hysteresis increased relatively ^{96, 117}.

This result is ascribed to the onset of mechanical healing of the microcracks with heating up to > 1000 °C and their reopening or refracturing which occurs on cooling below 730 °C. Even at 1000 °C the slope of ZAT5 materials sintered at 1600 °C is still at zero level thermal expansion when heating, suggesting that an important fraction of the microcracks is also still open. The thermal expansion coefficients of ZAT materials sintered at 1600 °C for 6 h are $0.2 \cdot 10^{-6}$ /K for ZAT9-Al₂TiO₅ content 90 vol%, $0.81 \cdot 10^{-6}$ /K for ZAT8-Al₂TiO₅ content 80 vol%, $0.93 \cdot$ 10^{-6} /K for ZAT7-Al₂TiO₅ content 70 vol%, $1.2 \cdot 10^{-6}$ /K for ZAT6-Al₂TiO₅ content 60 vol%, and $1.3 \cdot 10^{-6}$ /K for ZAT5-Al₂TiO₅ content 50 vol%, at a temperature from 20 to 1000 °C, respectively.

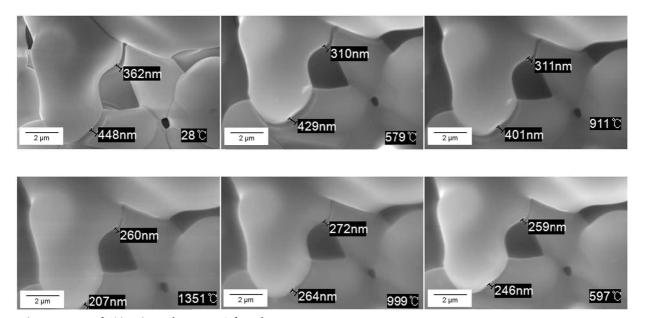


Fig. 4: Microstructure of ATM sintered at 1600 °C for 6 h.

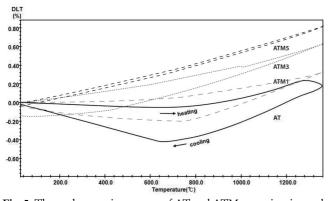


Fig. 5: Thermal expansion curves of AT and ATM ceramics sintered at 1600 $^{\circ}$ C for 6 h.

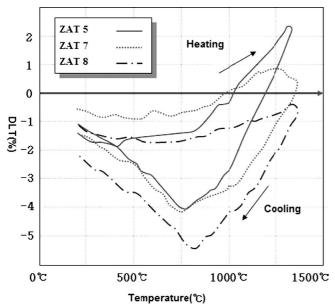


Fig.6: Thermal expansion curves of ZAT ceramics sintered at 1600 $^\circ C$ for 6 h.

(2) Thermodynamic thermal stability

The thermodynamic thermal stability of Al₂TiO₅ can be improved by the formation of solid solutions with MgO, Fe₂O₃, or TiO₂, which have pseudobrookite structures, Examples include Fe₂TiO₅^{11,30,71,72}, MgTi₂O₅^{66,67,73-80}, Ti₃O₅ (anosovite)⁸¹ and MgAl₂O₄ (spinel)⁸²⁻⁸⁷. This thermodynamic stabilization is related to the materials' decreased decomposition temperature during cooling (see Fig. 2). MgTi₂O₅ and Fe₂TiO₅ decompose to MgTiO₃ + TiO₂ below 700 °C and to Fe₂O₃ + TiO₂ at 565 °C, respectively, whereas Al₂TiO₅ decomposes to Al₂O₃ and TiO₂ below 1300 °C ^{12-15,88}.

This stabilization of Al_2TiO_5 ceramics is not only due to the intrinsic stability of $MgTi_2O_5$ and other pseudobrookite phases, but also due to increased entropy caused by cation disorder. It is conceivable that positive entropy might be further enhanced by additional entropy of mixing term, that is by the formation of Al_2TiO_5 , as confirmed by thermodynamic properties and X-ray diffraction patterns ^{89, 90}. The thermal stability of Al_2TiO_5 ceramics with solid solutions of Fe₂TiO₅, MgTi₂O₅, or Ti₃O₅ was studied by annealing at the critical temperature of 1100 °C for 100-300 h ^{20,54,91,92}.

For a solid solution to form, the solute element must have a similar ionic radius and similar atomic charge (valence) as the element that it is replacing (Table 2). Similar crystal structures are helpful but not always necessary. Fe³⁺ with a radius of 0.64 Å, readily forms solid solutions with Al³⁺ in Al₂TiO₅, which has a radius of 0.54 Å. Other elements include Cr³⁺ (0.69 Å) and Mg²⁺ (0.72 Å). Elements such as Si⁴⁺ and Zr⁴⁺ would be suitable for substituting Ti⁴⁺. Small amounts of oxide elements may diffuse between the phases during sintering and calcining, resulting in more complex solid solutions than intended for the stability of Al₂TiO₅-ZrTiO₄ (ZAT) composites ⁶³.

The addition of excess starting oxides can also give desired phase assemblies and subsequently beneficial properties. Small quantities of such as Fe_2O_3 and MgO can be added to Al_2TiO_5 via any of the routes described above. And they maintain the properties of Al_2TiO_5 , 1-5 wt% addition of, for example, Fe_2O_3 , MgO, or mixtures thereof can result in phase stability and controlled microcracking behavior because of decreased crystal anisotropy. In addition, cation diffusion between components can occur during calcining or sintering such that a small amount of ZrO_2 for a solution of $Al_2Ti_{1-x}Zr_xO_5$ can impart beneficial properties.

(3) Kinetic thermal stability

Polycrystalline Al₂TiO₅ can also be stabilized by limiting its grain growth $^{93-95}$ with the addition of, for example, SiO₂ ^{26,96}, ZrO₂ ^{97,98}, mullite ^{7,33,71,99-116}, or ZrTiO₄ ^{58,117-119}, most of which do not form solid solutions with Al₂TiO₅ but rather inhibit its decomposition. However, ZrO₂ and ZrTiO₄do not have a significant effect on the thermal stability of Al₂TiO₅, even after a long annealing at 1100 °C for 100 – 300 h ^{13,15,59}. A second mullite phase can reduce microcracking and grain growth in Al₂TiO₅, improving mechanical behavior at 1300 and 1450 °C, according to a compressive mechanical test that was correlated to the microstructure.

In general, most Al_2TiO_5 -mullite (ATM) ceramics used in high-temperature applications are prepared with an oxide method after sintering reactions of the individual minerals and after adjusting the main composition of $Al_2O_3/TiO_2/SiO_2$ to form Al_2TiO_5 -mullite and a glass phase such as; kaolin ¹²⁰, feldspar ^{74,76,77,121–126}, SrO feldspar ^{97,103,107,108}, amorphous SiO₂ ¹²⁶, boehmite ¹⁰⁹, inorganic micro-balloons ¹¹⁰, SE₂O₃ (SE₂O₃:0.1–10 wt%, SE:Y, Yb, Dy, Ho, Tm, Lu) ¹²⁶, cordierite-spinel ^{110,127}, spinel ^{128,129}, Na_{0.6}K_{0.4}AlSi₃O₈ ^{80, 86} and Al₂O₃ ^{130,131}.

Additives	Ionic Radius (Goldschmidt) in A or in B	Solid Solutions and Main Phase	Influence and Properties
Mg ²⁺	0.78 Å in B	$Mg_{x}Al_{2(1-x)}Ti_{(1+x)}O_{5}$	⁶⁹ moderate stability, low grain growth, ⁵³ accelerate formation tem- perature
Fe ³⁺ , Fe ⁴⁺	0.67 Å in A (0.65 Å) in B	Al _{2-y} Fe _Y Ti _{1-y} Ge _y O ₅ , (Mg _{0,5} Fe _{0,5})Ti ₂ O ₅	⁶⁹ good stability, promote grain growth, ⁵³ faster formation
Cr ³⁺	0.64 Å in A	Al _{2-x} Cr _x TiO ₅	²³ fine grain size, good thermal shock resistant, ¹⁵ good sinterability
Ti ³⁺ , (Ti ⁴⁺)	0.67 Å, in A (0.61 Å) in B	Ti ₃ O ₅	¹⁶ thermodynamically unstable phase
Ge4+	0.53 Å in B	Al ₂ Ti _{1-y} Ge _y O ₅	¹⁶ reduced decomposition, $y = 0,2$
Ga ³⁺	0.76 Å in A	$Al_{2-q}Ga_{q}TiO_{5}, q: 0, 0-0, 3$	¹⁶ significant stability only $q > 0.15$
Zr ⁴⁺	0.87 Å in B	Al ₂ Ti _{1-x} Zr _x O ₅	⁶⁹ slow grain growth, delay for- mation, ¹⁵ improve mechanical strength, hysteresis effect
Si ⁴⁺	0.39 Å	$\begin{array}{l} Al^{3+}{}_{6(2-x)/(6+x)}Si^{4+}{}_{6x/(6+x)} > \\ T_{6x/(6+x)}Ti^{4+}O_5, \text{ smaller Si-solubility} \end{array}$	¹⁶ very good stability, controlled grain growth, low thermal conduc- tivity,/high temperature formation
Co ²⁺	0.82 Å in A	distorted octahedral geometry	⁵³ slow grain growth, improve strength, fast formation
La ³⁺	1.12 Å		⁶⁹ poor stability, very low thermal conductivity, moderate grain size, high strength
Y ³⁺	1.06 Å		⁶⁹ bring about fine grain size, ⁷⁰ good hysteresis effect with small grain size

Table 2: Influence of additives on properties of Al_2TiO_5 , A_2BO_5 solid solutions [Ion A: Al⁺³ (0.54Å), Ion B: Ti⁴⁺ (0.61 Å)]³⁴.

The largest increases in strength can occur with the synthesis of Al₂TiO₅ powder, particularly using Al₂O₃, MgO or ZrO₂. The increase in mechanical strength was correlated in microstructural terms to the observation of fine Al₂O₃, MgAl₂O₄, mullite, ZrO₂, or ZrTiO₄ particles at the grain boundaries (Fig. 7) ³⁷. Such distributions of fine particles at grain boundaries would prevent grain growth and reduce microcracking, thereby increasing strength ^{13,29,31}.

The addition of SiO₂ improved the strength of reactionsintered material by a limited amount of 3 %. This was attributed to the formation of a grain boundary liquid phase during sintering ⁷. Pena *et al.* ¹³¹ examined the properties of an Al₂TiO₅-mullite-ZrO₂ mixture and found a strength of 30 MPa, representing a 10-fold improvement compared to that of pure Al₂TiO₅.

Yano *et al.*¹³² reported a mechanical strength of approx. 100 MP for a material containing 25 vol% mullite; the increase in strength coincided with the control of decomposition. Morishima *et al.*¹³³ reported a strength of 70 MPa for an Al₂TiO₅-mullite composite material containing 91 vol% Al₂TiO₅, but this material did not retain its strength.

(4) Thermal shock resistance

The thermal shock resistance of Al₂TiO₅ ceramics is influenced not only by their thermal expansion coefficient, thermal conductivity, strength, modulus of elasticity, Poisson's ratio, etc. but also by their macroscopic size and shape, heating and cooling states, and the heat transfer speed ¹³⁴. These effects and the particle size often govern the sensitivity of physical properties including the coefficients of thermal expansion, porosity, or pore size, and low firing temperature, which are undesirable in DPF manufacture. Properties desirable for DPF are difficult to achieve. Al₂TiO₅-based materials have phase stabilities and physical/mechanical properties that are difficult to control because of the complex microcracking behavior.

Thermal shock resistance is generally difficult to quantify, and it is usually expressed in terms of a number of empirical resistance parameters, which are dependent on the test conditions. However, an examination of strength retention after quenching is easily performed.

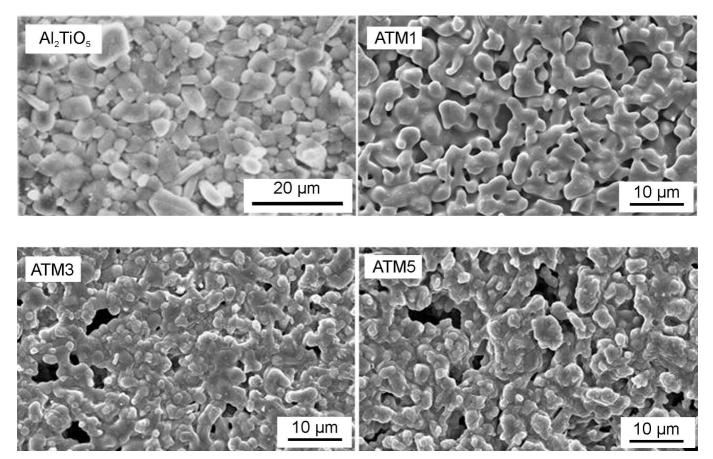


Fig. 7: Microstructure of Al₂TiO₅-mullite (ATM) ceramics with various mullite contents: 10 vol%, 30 vol% and 50 vol%.

Theoretical thermal shock resistance is calculated from the thermal stress parameters, R_1 and R_2 (pertaining to severe and mild quenching, respectively). Thus,

$$R_1 = [\sigma_{\rm br}(1 - \vartheta \nu)]/\alpha E \tag{21}$$

$$R_2 = R_1 \times \lambda \tag{22}$$

where R_1 and R_2 are constants that can be described as a material's resistance factor against thermal stresses. $\sigma_{\rm br}$ is the flexural strength, *E* is Young's modulus and α the thermal expansion coefficient. Poisson's ratio ($\vartheta = 0.24$); and the thermal conductivity ($\lambda = 1.5 \text{ WmK}^{-1}$) were assumed to be constant ^{135, 136}. Once the material's resistance to crack initiation has been exceeded, its resistance to damage (from crack propagation) becomes the decisive element of the thermal cycling behavior. This resistance is described by the thermal stress parameter, R_7 ¹³⁷.

$$R_7 = \gamma_{\rm eff} E / [\sigma_{\rm br}^2 (1 - \vartheta_{\nu})]$$
⁽²⁶⁾

where γ_{eff} is the specific fracture-surface energy ^{138, 139}. The above discussion of the dependence of σ_{br} , *E*, and τ on the mineral phase content indicates that the resistance to damage described by Eq. (6) is not uniquely dependent in the same sense. The fracture-surface energy (not investigated in the present study) should have been determined primarily on the basis of microcracks, depending on the type and extent of the second phase, as indicated by the temperature dependence of stress.

For high-temperature applications (1000-1300 °C), long-annealing thermal durability, thermal cycling sta-

bility and residual mechanical properties are very important. Attempts to improve the thermal durability of Al_2TiO_5 between 750 and 1400 °C are in progress. In particular, Al_2TiO_5 -mullite (ATM) ceramics have very high volumetric heat capacities (approx. 3.9-4.0 J cm⁻³ °C⁻¹ for fully dense ATM at 800 K) in combination with low CTE ¹²⁵.

However, in the manufacture of ATM ceramics involving sintering at above 1600 °C, the high temperatures increase manufacturing costs and therefore also the final product costs. The production of Al_2TiO_5 -based ceramics often requires the use of pre-reacted Al_2TiO_5 or mullite powders, which also increases manufacturing costs. Moreover, properties desirable for DPFs are difficult to achieve.

Approaches have been employed to reduce sintering temperatures, including the addition of, for example, inorganic micro-balloons $(1450 - 1600 \,^{\circ}\text{C})^{119}$, an amorphous phase $(1375 - 1450 \,^{\circ}\text{C})^{126}$, SE₂Ti₂ $(1400 - 1650 \,^{\circ}\text{C})^{125}$, anatase and boehmite $(1375 - 1500 \,^{\circ}\text{C})^{57}$, 111, 113, 126, 140. In general, raw materials, such as alkali feldspar, SrO feldspar, kaolin, silicate, aluminosilicate, magnesium silicate, hematite, rutile, SE₂O₃, and inorganic microballoons are added to form solid solutions of Al₂TiO₅-mullite or glass-phase-based ceramics by means of reaction sintering.

(5) Raw materials for mixed stability

The raw materials for the formation of Al_2TiO_5 are oxide sources that react to form mullite or $ZrTiO_4$ and Mg- or Fe-stabilized Al2TiO5 phases 141, and/or partially or completely pre-reacted mullite or ZrTiO4 and Mg- or Fe-stabilized Al₂TiO₅ powders. The alumina source is a powder which, when heated to a sufficiently high temperature in the absence of other raw materials, yields largely pure aluminum oxide, which includes alpha-alumina, transition alumina (y-alumina or δ -alumina), boehmite, aluminum hydroxide, and mixtures thereof. The morphology of alumina has to be tabular with the particle sizes sufficiently $large(10-25 \,\mu m)$ for microcracking to be induced in the final structure. Hematite is recommended as a source of an iron oxide. Suitable titania sources are rutile and anatase with particles of approx. $7-15 \mu m$. Silica sources can include amorphous SiO₂, such as cristobalite, kaolin (SiO₂ 46 %, Al₂O₃ 39 %, Fe₂O₃ 0.8 %, etc.), and inorganic micro-balloons, and ZrO2 sources can include tetragonal and cubic forms stabilized by the addition of small amounts of CaO, Y₂O₃, or MgO. ZrSiO₄ (zircon) can be used as a silica and zirconia source; it contains 45.02 wt% Zr and 17.67 wt% Si. Material compositions are protected intellectual property and should not be inappropriately appropriated for DPF products based on Al₂TiO₅ and mullite. Therefore a thorough survey of the patent literature should be performed.

In particular, the survey should examine the most important requirements related to Al₂TiO₅ceramics with different inorganic materials for diesel exhaust filtration applications: low thermal expansion, high thermal shock resistance ($\Delta T = > 1000 \,^{\circ}$ C), suitable porosity, and a narrow pore size distribution. Other considerations include maximum operation temperature (1100–1200 $^{\circ}$ C), durability of microstructure, CTE : < 1.5 *10⁻⁶K⁻¹, good mechanical strength (50–70 MPa), and excellent chemical resistance.

III. Conclusions

The development of high-performance advanced ceramics for high-temperature applications has been limited owing to problems related to thermal stress induced by anisotropic thermal expansion. To avoid this, materials with low or zero thermal expansion should be developed. Such materials could be used to fabricate, for example, diesel particulate filters (DPFs) that require the materials to retain their original dimensions, without being affected by thermal shock at high temperature.

Because reduced thermal expansion in anisotropic Al_2TiO_5 materials minimizes thermal stress, considerable effort has been made to develop low-expansion materials for severe thermal shock applications. Pure Al_2TiO_5 tends to decompose reversibly into Al_2O_3 and TiO_2 at 800 – 1300 °C on cooling below the equilibrium temperature of 1280 °C. After decomposition, it no longer exhibits a low thermal expansion coefficient or favorable thermal shock behavior. A literature survey was performed to explore low-thermal expansion Al_2TiO_5 -mullite and Al_2TiO_5 -ZrTiO₄ ceramics with good thermal shock resistance, suitable porosity, and a narrow pore size distribution for diesel exhaust filtration applications.

Silicon carbide (SiC) has been used as an alternative to cordierite in the fabrication of diesel particulate filters. However, it is expensive and must be segmented owing to its high coefficient of thermal expansion (CTE) and poor thermal shock resistance. Therefore, there is a need for a ceramic suitable for high-temperature applications that boasts the advantages of cordierite, but does not share its disadvantages. Furthermore, new materials based on Al_2TiO_5 -ZrTiO_4-mullite (ATZM) or Al_2TiO_5 -ZrTiO_4-ZrO₂ (ATZZ) compositions for DPFs must not infringe existing patents.

Acknowledgements

This study was supported by Mann & Hummel GmbH in Stuttgart, Germany.

References

- ¹ Gugel, E.: Ceramic design materials for engine construction, (in German) *Keram. Z.*, **36**, [9], 477–479, (1984).
- ² Heinrich, H., Langer, M., Siebels, J.E.: Experimental results with ceramic components in passenger-car diesel engines, Volkswagen AG Research Division D-3180, Wolfsburg, Germany, (1990).
- ³ Wright, R.E. Acoustic emission of aluminium titanate, J. Am. Ceram. Soc., 5, [5], 54-56, (1972).
- ⁴ Morosin, B., Lynch R.W.: Structure studies on Al₂TiO₅ at Room Temperature and at 600 °C, *Acta Crystallogr.*, B28, 1040-1046, (1972).
- ⁵ Buessem, W.R., Thielke, N.R., Sarakauskas, R.V.: Thermal expansion hysteresis of aluminium titanate, *Ceram. Age*, 38–40, (1952).
- ⁶ Ohya, Y., Nakagawa, Z.: Grain boundary microcracking due to thermal expansion anisotropy in aluminium titanate ceramics, J. Am. Ceram. Soc., 70, [8], C184–186, (1987).
- ⁷ Kim, I.J.: Thermal shock resistant and mechanical properties of aluminum titanate-mullite and powder preparation by solgel process, Dissertation, RWTH Aachen, Germany, (1991).
- ⁸ Kato, E., Daimon, K., Takahashi, J.: Decomposition temperature of β-Al₂TiO₅, *J. Am. Ceram. Soc.*, **63**, [5-6], 355-356, (1980).
- ⁹ Staudt, T.: Properties, Corrosion Behavior and Possible Applications of Fused Aluminium Titanate, (in German), Dissertation, RWTH Aachen, Germany, (1988).
- ¹⁰ Thomas, H.A.J., Sterens, R.: Aluminium titanate a literature review: Part 1, Microcracking phenomena, *Br. Ceram. Trans. J.*, 88, 144-151, (1989).
- ¹¹ Han, C., Selb, D.: Improvement of aluminium titanate ceramics, (in German), Sprechsaal, 118, [12], 1157-1166, (1985).
- ¹² Buscaglia, V., Battilana, G., Leoni, M., Nanni, P.: Decomposition of Al₂TiO₅-MgTi₂O₅ solid solution: A thermodynamic approach, J. Mater. Sci., **31**, 5009-5016, (1996).
- ¹³ Kim I.J.: Thermal stability of Al₂TiO₅ ceramics for new diesel particulate filter applications, *J. Ceram. Process. Res.*, **11**, [4], 411-418, (2010).
- ¹⁴ Lee, S.C., Wahlbeck, P.G.: Chemical kinetics and mechanism for the formation reaction of Al₂TiO₅ from alumina and titania, *High Temp. Sci.*, **21**, 27–40, (1986).
- ¹⁵ Nützenadel, P.: Tialite, a ceramic material with good thermal shock resistance, (in German), in Freiberger Forschungsheft A 604 VEB Deutscher Verlag f. Grundstoffindustrie, Leipzig, 7-41, (1979).
- ¹⁶ Jung, J., Feltz, A., Freudenberg, B.: Improved thermal stability of al-titanate solid solutions, *cfi/Ber. DKG*, **70**, [6], 299-301, (1993).
- ¹⁷ Zografou, C., Okupia, G.S., Kroenert, W., Staudt, T., Rehfeld, G.: Thermal durability of aluminium titanate ceramics prepared from electrofused powders, *Sci. Ceram.*, **14**, 757, (1987).

- ¹⁸ Freudenberg, B., Linder, H.A., Gugel, E., Thometzek, P.: Thermomechanical properties of aluminium titanate ceramic between 20 and 1000 °C, ECRs, 2, 264–271, (1989).
- ¹⁹ Sobhani, M., Rezaie, H.R., Naghizadeh, R.: Sol-gel synthesis of aluminium titanate (Al₂TiO₅) nano-particles, *J. Mater. Process. Tech.*, **206**, 282–285, (2008).
- ²⁰ Prasadarao, A.V., Selvarai, U., Komarneni, S., Bhalla, A.S., Roy, R.: Enhanced densification by seeding of sol-gel-derived aluminium titanate, *J. Am. Ceram. Soc.*, **75**, [6], 1529–1553, (1992).
- ²¹ Woignier, T., Lespade, P., Phallippon, J., Rogier, R.: Al₂O₃-TiO₂ and Al₂TiO₅ ceramic materials by the sol-gel process, *J. Non-Cryst. Solids*, 100, 325–529, (1988).
- ²² Suzuki, H.: Preparation of aluminium titanate from metal alkoxides and the effect of magnesium additives, *J. Jpn. Soc. Powder Metall.*, 34, [1], 8-13, (1987).
- ²³ Okamura, H., Barringer, E.A., Bowen, H.K.: Preparation and sintering of monosized Al₂O₃-TiO₂ composite powder, *J. Am. Ceram. Soc.*, **69**, [2], C-22-C-24, (1986).
- ²⁴ Kim, I.J., Lee, K.S.: Characterization of aluminum titanate mullite ceramics synthesized by a semi sol-gel method, *J. Ceram. Process. Res.*, **3**, [4], 202–209, (2003).
- ²⁵ Hori, S., Ishii, Y., Yoshimura, M., Somiya, S.: Preparation of co-deposited Al₂TiO₅ powders by vapor phase reaction using combustion flame, *Yogyo-Kyokai-Shi*, **94**, [4], 400–408, (1986).
- ²⁶ Hori, S., Kurita R., Yoshimura M., Somiya S.: Sintering of CVD aluminium oxide-titanium dioxide powders, *Int. J. High Tech. Cer.*, **1**, 59–67, (1985).
- ²⁷ Hamano, K., Ohya, Y., Nakagawa, Z.: Microstructure and mechanical strength of aluminium-titanate ceramic prepared from mixture of alumina and titania, *Yogyo Kyokai Shi*, **91**, [2], 94–101, (1983).
- ²⁸ Freudenberg, B., Mocellin, A.: Aluminium titanate formation by solid-state reaction of fine Al₂O₃ and TiO₂ powders, *J. Am. Ceram. Soc.*, 70, [1], 33–38, (1987).
- ²⁹ Boden, P., Glasser, F.P.: Phase relationship in the system Al₂O₃-TiO₂-MgO, *Trans. Brit. Cer. Soc.*, **72**, 215-220, (1973).
- ³⁰ Bhattacharyya, B.N., Sen, S.: Aluminium titanate formation and properties, *Cent. Glass Ceram. Res. Inst. Bull. (India)*, 12, 92-103, (1965).
- ³¹ Cini, L.: Investigationes sobre el aluminato de titanio, *Bol. Soc. Espan. Cer.*, 5, 505-514, (1966).
- ³² Neumann-Lischka, S.: Influence of different dopings on properties and microstructure of Al_2TiO_5 materials, in German, Dissertation, RWTH Aachen, Germany, (1989).
- ³³ Bron, V.A.: Conditions for the formation of aluminium titanate as a function of temperature and time (in Russian), *Doklady Akad. Nauk. SSSR*, 91, 505-514, (1953).
- ³⁴ Kim, K.Y.: High technology ceramics processing, KAIST Fine Ceramics Research Lab., 96–103, (1986).
- ³⁵ Morishima, H., Kato, Z., Saito, K., Yano, T., Ootsuka, N.: Synthesis of aluminium titanate-mullite composite having high thermal shock resistance, *J. Mater. Sci. Lett.*, **6**, 389–390, (1987).
- ³⁶ Bonhomme-Coury, L., Lequeux, N., Mussotte, S., Boch, P.: Preparation of Al₂TiO₅-ZrO₂ Mixed Powders via Sol-Gel Process, J. Sol-Gel Sci. Techn., 2, [1-3], 371-375, (1994).
- 37 Innocenzi, P., Martucci, A.: Sol-gel synthesis of $\beta\text{-Al}_2\text{TiO}_5$ thin films at low temperature, *Chem. Mater.*, **12**, [2], 517–524, (2000).
- ³⁸ Tudyka, S., Planz, K., Stroh, N., Aldinger, F.: Al₂TiO₅-New contribution to its preparation via sol-gel technique, 22nd Annual Conference on Composites, Advanced Ceramics, 19, (2010).
- ³⁹ Licoccia, S., Luisa di Vona, M., Traversa, E.: Low-temperature sol-gel preparation of Al₂TiO₅ thin films: Spectroscop-

ic analysis of the precursors, *J. Sol-Gel Sci. Techn.*, 19, [1-3], 577-580, (2000).

- ⁴⁰ Stanciu, L., Groza, J.R., Stoica, L., Plapcianu, C.: Influence of powder precursors on reaction sintering of Al₂TiO₅, *Scripta Mater.*, **50**, 1259 – 1262, (2004).
- ⁴¹ Jambazov, S., Lepkova, D.: Synthesis and properties of A1₂TiO₅, *J. Eur. Ceram. Soc.*, 3, 1013–1018, (1993).
- ⁴² Rezaie, H.R., Sobhani, M., Naghizadeh, R.: Formation and decomposition of sol-gel synthesized aluminum titanate nano powder at the presence of Fe₂O₃ additive, *Defect Diffus. Forum*, 237–276, 549–553, (2008).
- ⁴³ Andrianainarivelo, M., Corriu, R.J.P., Leclercq, D., Mutin, P.H., Vioux, A.: Nonhydrolytic sol-gel process: Aluminium and zirconium titanate gels, *J. Sol-Gel Sci. Techn.*, 8, 89–93, (1997).
- ⁴⁴ Coury, L., Lequez, N., Mussotte, S., Boch, P.: Preparation of Al₂TiO₅-ZrO₂ Mixed powders via sol-gel process, *J. Sol-Gel Sci. Techn.*, 2, 371–375, (1994).
- ⁴⁵ Innocenzi, P., Martucci, A., Armelao, L.: Sol-gel synthesis of β-Al₂TiO₅ thin films at low temperature, *J. Eur. Ceram. Soc.*, 25, 3587–3591, (2005).
- ⁴⁶ Walter, G., Ludwig, N., Horst, S.: Thermodynamics and statistical mechanics, Springer-Verlag, (1995).
- ⁴⁷ Barin, I., Knacke, O.: Thermochemical properties of inorganic substrates, Springer Verlag, Verlag Stahleisen m.b.H. Duesseldorf, (1977).
- ⁴⁸ Gani, M.S., McPherson, R.: The enthalpy of formation of aluminium titanate, *Thermochim. Acta*, 7, 251–252, (1973).
- ⁴⁹ Slepetys, R.A., Vaughan, P.A.: Solid solution of aluminium oxide in rutile titanium dioxide, *J. Phys. Chem.*, **73**, 2157–2162, (1969).
- ⁵⁰ Bonnickson, K.R.: High temperature heat contents of some titanates of aluminium, iron, and zinc, J. Am. Chem. Soc., 77, 2152-2154, (1955).
- ⁵¹ Kubaschewski, O.: Therda's database, (in German), Institute for Theoretical Metallurgy, Aachen, (1986).
- ⁵² Knacke, O., Kubaschewski, O., Hasselmann, K.: Thermochemical properties of inorganic substances, Springer Verlag. Verlag Stahleisen m.b.H., Duesseldorf, (1991).
- ⁵³ Woermann, E., Ender, A., Hofmann, R., Stapper, L., Dhupia, G.: The stability of pseudobrookite mixed crystals, (in German), *Fortschr. Min.*, **58** Beiheft 126, (1980).
- ⁵⁴ Lang, S.M., Fillmore, C.L., Maxwell, L.H.: The phase diagram of the Al₂O₃: TiO₂ System, *J. Res. NBS (US)*, **48**, [4], 298-312, (1952).
- ⁵⁵ Lejus, A.M., Goldberg, D., Revcolevschi A.: New compounds formed between rutile and oxides of trivalent and tetravalent metals, C. R. Seances Acad. Sci., Ser. C, 263, [20], 1223-1226, (1966).
- ⁵⁶ Pena, P., DeAza, S.: *Ceramica (Florence)*, **33**, [3], 23-30, (1980).
- ⁵⁷ Kameyama, T., Yamaguchi, T.: Kinetic studies on the eutectoid decomposition of Al₂TiO₅, J. Cer. Soc. Japan, 84, 589, (1976).
- ⁵⁸ Kato, E., Daimon, K., Kobayashi, Y.: Improvement in sinterability of Al₂TiO₅ by partial decomposition, *Am. Ceram. Soc. Bull.*, **57**, 756, (1978).
- ⁵⁹ Hennicke, H.W., Lingenberg W.: Microcrack structure and physical properties of aluminium titanate, *Fortschrittsberichte der DKG*, Band 1, Heft 3, 73-75, (1985).
- ⁶⁰ Bauka, C. E.: Industrial burners handbook, CRC Press, (2004).
- ⁶¹ Ziman, J.: The thermal properties of materials, *Sci. Am.*, **217**, [3], 180-188, (1967).
- ⁶² Sautet, J.C., Salenty, L., Taranto, M. D.: Large-scale turbulent structures in non-premixed, oxygen enriched flames, *Int. Commun. Heat Mass*, 28, 277-285, (2001).

- ⁶³ Parke, F.J.: A1₂TiO₅ -ZrTiO₄ -ZrO₂ composites: A new family of low-thermal-expansion ceramics, *J. Am. Ceram. Soc.*, **73**, [4], 929–932, (1990).
- ⁶⁴ Bueno, S., Moreno, R., Baudín, C.: Reaction-sintered Al₂O₃/Al₂TiO₅ microcrack-free composites obtained by colloidal filtration, *J. Eur. Ceram. Soc.*, **24**, 2785–2791, (2004).
- ⁶⁵ Meléndez-Martínez, J.J., Jiménez-Melendo, M., Domínguez-Rodríguez, A., Woetting, G.: High temperature mechanical behavior of aluminium titanate-mullite composites, *J. Eur. Ceram. Soc.*, **21**, 63–70, (2001).
- ⁶⁶ Buscaglia, V., Nanni, P.: Decomposites of Al₂TiO₅ and Al_{2(1-x)}Mg_xTi_(1+x)O₅ Ceramics, *J. Am. Ceram. Soc.*, **81**, [10], 2645-2653, (1998).
- ⁶⁷ Kuszyk, J.K., Bradt, R.G.: Influence of grain size on effects of thermal expansion anisotropy in MgTi₂O₅, *J. Am. Ceram. Soc.*, **56**, [8], 420–423, (1973).
- ⁶⁸ Kim, I.J., Zhao, F., Gong, J., Lee, K.S., Han, I.S., Kuk, W.S.: Thermal durability of aluminum titanate-mullite composites with high thermal shock resistance, *J. Ceram. Process. Res.*, 4, [2], 71–79, (2003).
- ⁶⁹ Lingenberg, W.: Material properties of Al₂TiO₅ with particular consideration of formation and decomposition reactions, (in German), Dissertation, TU Clausthal, Germany (1985).
- ⁷⁰ Lübke, I.: Tests on the behaviour of aluminium titanate in heavy clay ceramic materials, Dipl.Arbeit, in German, TU Clausthal, Germany, (1982).
- ⁷¹ Ogunwumi, S.B., Tepesch, P.D.: Mullite-aluminum titanate diesel exhaust filter, U.S. Patent 6, 849, 181 B2, (2005).
- ⁷² Gheorghiu, T.C., Spetseris, M.A.: Method for controlling the firing of ceramics, U.S. Patent 6, 511, 628 B2, (2003).
- ⁷³ Fukuda, T., Yoko, T., Takahashi, M., Fukuda, M., Fukuda, M.: Magnesium aluminum titanate crystal structure and method for producing same, US 224110A, (2007).
- ⁷⁴ Fukuda, M., Fukuda, M., Fukuda, T., Takahashi, M., Yoko, T.: Honeycomb filter for cleaning exhaust gas and method for manufacturing the same. J. P. Patent Application 105622A2, (2007).
- ⁷⁵ Fukuda, M., Fukuda, M., Yoko, T., Takahashi, M.: Magnesium aluminum titanate crystal structure and method for producing same, E.P. Patent Application 1 741 684 A1, (2007).
- ⁷⁶ Fukuda, T., Fukuda, M., Fukuda, M., Yoko, T., Takahashi, M.: Honeycomb filter for clarifying exhaust gas and method for manufacture thereof, E.P. Patent Application 1 645 319 A1, (2006).
- ⁷⁷ Fukuda, T., Fukuda, M., Fukuda, M., Yoko, T., Takahashi, M.: Honeycomb carrier for exhaust gas clarification catalyst and method for production thereof, E.P. Patent Application 1 652 830 A1, (2006).
- ⁷⁸ Fukuda, T., Fukuda, M., Fukuda, M.: Process for preparing sintered body of aluminium titanate, CA 2 325 172 A1, (2001).
- ⁷⁹ Asami, S., Harada, T., Hamanaka, T.: Aluminium titanatemullite base ceramics, E.P. Patent Application 0 210 813 A2, (1987).
- ⁸⁰ Asami, S., Hamanaka, T., Harada, S.: Aluminium titanate-mullite based ceramic body, J.P. Patent Application 300 875 7 A2, (1991).
- ⁸¹ Buessem, W.R., Thielke, N.R., Sarakauskas, R.V.: Thermal expansion hysteresis of aluminum titanate, *Ceram. Age*, 60, 38-40, (1952).
- ⁸² Yoko, T., Takahashi, M., Fukuda, T., Fukuda, M., Fukuda, M.: Honeycomb filter for clarifying exhaust gas and method for manufacture thereof, E.P. Patent Application 1 666 119 A1, (2006).
- ⁸³ Fukuda, M., Fukuda, M., Fukuda, T., Takahashi, M., Yoko, T.: Method for producing aluminum titanate sintered compact, J. P. Patent Application 04813, (2003).

- ⁸⁴ Fukuda, T., Fukuda, M., Fukuda, M., Yoko, T., Takahashi, M.: Method for producing aluminum magnesium titanate sintered product, E.P. Patent Application 1 559 696 A1, (2005).
- ⁸⁵ Fukuda, T., Fukuda, M., Fukuda, M.: Process for preparing sintered body of aluminum titanate, E.P. Patent Application 1 156 023 B1, (2004).
- ⁸⁶ Aluminum Titanate-Based Porous ceramic body, J.P. Patent Application 096 634, (2006).
- ⁸⁷ Watanabe, K., Suwabe, H.: Ceramic honeycomb filter and method of manufacturing the same, E.P. Patent Application 1 666 118 A1, (2006).
- ⁸⁸ Buscaglia, V., Delfrate, M.A., Leoni, M., Bottino, C., Nanni, P.: Decomposition of Al₂TiO₅-MgTi₂O₅ solid solution: A thermodynamic approach, *J. Mater. Sci.*, **31**, 1715–1724, (1996).
- ⁸⁹ Wechsler, B.A., Navrotsky, A.: Thermodynamics and structural chemistry of compounds in the system MgO-TiO₂, *J. Solid State Chem.*, **55**, 165–180, (1984).
- ⁹⁰ Freudenberg, B.: Study of the solid state reaction Al_2O_3 +TiO₂ \rightarrow Al₂TiO₅, (in French), Thesis EPFL, no 709, (1987).
- ⁹¹ Pohlmann, H.J., Schricker, K., Schüller, K.H.: Studies on materials in the Al₂O₃-TiO₂-SiO₂ system, *Ber. Dt. Keram. Gas.*, **52**, [6], 179–183, (1975).
- ⁹² Kim, I.J., Kwak, H.S.: Thermal shock resistance and thermal expansion behavior with composition and microstructures of Al₂TiO₅ Ceramics, *Can, Metall. Quart.*, **39**, [4], 387–395, (2000).
- ⁹³ Boccaccini, A.R., Pfeiffer, K., Kern, H.: Thermal shock resistant Al₂TiO₅-glass matrix composite, *J. Mater. Sci. Lett.*, 18, 1907–1909, (1999).
- ⁹⁴ Kim, H.C., Lee, K.S., Kweon, O.S., Aneziris, C.G., Kim, I.J.: Crack healing, reopening and thermal expansion behavior of Al₂TiO₅ Ceramics at High Temperature, *J. Eur. Ceram. Soc.*, 27, 581–584, (2007).
- ⁹⁵ Mélendez-Martínez, J.J., Jiménez-Melendo, M., Domínguez-Rodríguez, A., Wötting, G.: High temperature mechanical behavior of aluminium titanate-mullite composites, *J. Eur. Ceram. Soc.*, **21**, 63 – 70, (2001).
- ⁹⁶ Kim, I.J., Zhao, F., Gong, J., Lee, K.S., Han, I.S., Kuk, W.S.: Thermal durability of Al₂TiO₅-mullite composites with high thermal shock resistance, *J. Ceram. Process. Res.*, 4, [2], 71–79, (2003).
- ⁹⁷ Nagano, M., Nagashima, S., Maeda, H., Kato, A.: Sintering behavior of Al₂TiO₅ base ceramics and their thermal properties, *Ceram. Int.*, **12**, 681–687, (1999).
- ⁹⁸ Kim, I.J., Cao, G.: Thermal durability and low thermal expansion behavior of Al₂TiO₅-ZrTiO₄ ceramics between 750 and 1400 °C, *J. Eur. Ceram. Soc.*, 22, 2627–2632, (2002).
- ⁹⁹ Brady, M.D., Deneka, T.J., Ogunwumi, S.B., Shustack, P.J., Tennent, D.L., Tepesch, P.D., Wang, J., Warren, C.J.: Aluminium titanate ceramic forming batch mixtures and green bodies including pore former combination and methods of manufacturing and firing same, US 0006561 A1, (2007).
- ¹⁰⁰ Aluminium titanate-based ceramic and product method, KR10-2007-0012506, US 60/564,081, PCT/US 009596, (2005).
- ¹⁰¹ Merkel, G.A.: Narrow pore size distribution aluminium titanate body and method for making same, US 0214759 A1, (2007).
- ¹⁰² Merkel G. A.: Mullite-aluminium titanate body and method for making same, US 0021308 A1, (2006).
- ¹⁰³ Merkel G. A.: Narrow pore size distribution aluminium titanate body and method for making same, US 0021309 A1, (2006).
- ¹⁰⁴ Beall, G.H., Melscoet-Chauvel, I.M., Ogunwumi, S.B., Julien, D.J.S., Tepesch, P.D., Warren, C.J.: Aluminium titanate-based ceramic article, US 7,001,861 B2, (2006).

- amic body based on alu- ¹²⁵ Process
- ¹⁰⁵ Ogunwumi, S.B., Tepesch, P.D.: Ceramic body based on aluminium titanate and including a glass phase, US 7,071,135 B2, (2006).
- ¹⁰⁶ Aluminum titanate ceramic articles and method of making same, U.S. Patent Application 281,627 A1, (2006).
- ¹⁰⁷ Alumina-bound high-strength ceramic honeycomb, U.S. Patent Application 6,677,261 B1, (2004).
- ¹⁰⁸ Ceramic body based on aluminum titanate, U.S. Patent Application 6,942,713 B2, (2005).
- ¹⁰⁹ Kaori, T.: Method of manufacturing porous body, U.S. Patent Application 0063398 A1, (2007).
- ¹¹⁰ Katsuhiro, I.: Method of manufacturing porous body, U.S. Patent Application 0063398 A1, (2007).
- ¹¹¹ Makino, K.: Process of the production of a ceramic structure, (in German), D. E. Patent 10 2006 000 291 A1, (2006).
- ¹¹² Kumazawa, K., Kotani, W.: Honeycomb regenerator, E.P. Patent Application 0 724 126 A2, (1996).
- ¹¹³ Noguchi, Y., Fukao, K., Miwa, S.: Aluminium titanate ceramics and methods for their manufacturing, (in German), D.E. Patent 42 32 640 C3, (1993).
- ¹¹⁴ Asammi, S., Harada, T., Hamanaka, T.: Aluminium titanatemullite base ceramics, E.P. Patent Application 0 210 813, (1987).
- ¹¹⁵ Freudenberg, B., Seyer, J., Gugel, E.: Sintered ceramic materials based on aluminium titanate, A process for their production and their use, US 5 153 153, (1992).
- ¹¹⁶ Process for the production of a ceramic materials and its application, (in German), D.E. Patent 37 07 396 C2, 1988.
- ¹¹⁷ Parker, P.J.: Low thermal expansion ZrTiO₄-Al₂TiO₅-ZrO₂ compositions, E.P. Patent Application 0278 456 A2, (1988).
- ¹¹⁸ A method for producing aluminium titanate-zirconium titanate ceramics with low expansion behavior. KR 0 486 121, 2006.
- ¹¹⁹ Kim, I.J., Lee, K.S., Cao, G.Z.: Low thermal expansion behavior and thermal durability of Al₂TiO₅-ZrTiO₄ Ceramics, *Lat. Am. J.Metall. Mater.*, **20**, [2], 59, (2000).
- ¹²⁰ Manabu, I., Tatsuya, H., Makoto, T., Tomonori, T.: Ceramic filter. U. S. Patent Application 0213165 A1, (2006).
- ¹²¹ Fukuda, T., Fukuda, M., Fukuda, M., Yoko, T., Takahashi, M.: Honeycomb filter for clarifying exhaust gas and method for manufacture thereof, US 059484A, (2007).
- ¹²² Fukuda, T., Fukuda, M., Fukuda, M.: Method for producing aluminum titanate sintered object, U. S. Patent Application 7 011 788 B2, (2006).
- ¹²³ Fukuda, M., Fukuda, M., Fukuda, T., Takahashi, M., Yoko, T.: Method for processing aluminum titanate sintered compact, E. P. Patent Application 1 514 857 A1, (2005).
- ¹²⁴ Fukuda, T., Fukuda, M., Fukuda, M.: Method for producing aluminum titanate sintered object, E. P. Patent Application 1 338 581 A1, (2003).

- ¹²⁵ Process for producing ceramic honeycomb structure. WO 2007/015 495 A1, (2007).
- ¹²⁶ Noguchi Y., Miwa S., Fukao, K.: Aluminium titanate ceramics and processes for the manufacture thereof, D. E. Patent 42 28 527 C2, (1993).
- ¹²⁷ Tokudome, O., Suwabe, H., Sekiguchi, K., Yamane, H.: Ceramic honeycomb structure and ceramic body used for extrusion-molding the structure. E. P. Patent Application 1 666 436 A1, (2006).
- ¹²⁸ Fukuda, T., Fukuda, M., Fukuda, M.: Process for preparing sintered body of aluminium titanate, U.S. Patent Application 6.403 019 B1, (2002).
- ¹²⁹ Fukuda, T., Fukuda, M., Fukuda, M.: Process for preparing sintered body of aluminium titanate, C. A. Patent Application 2 325 172 A1, (2001).
- ¹³⁰ Odaka, F., Tanuma, E.: High-temperature ceramic filter, E. P. Patent Application 0586 102 A1, (1994).
- ¹³¹ Li, M., Chen, F., Shen, Q., Zhang, L.: Fabrication and thermal properties of Al₂TiO₅ ceramics, *Mater. Sci.-Poland*, 28, 3663, (2010).
- ¹³² Pena, P., Aza, D.: Phase studies in the system ZrO₂-Al₂O₃-SiO₂-TiO₂, *Sci. Ceram.*, **12**, 201, (1984).
- ¹³³ Yano, T., Nagai, N., Kiyohara, M., Saito, K., Otsuka, N.: Thermal and mechanical properties of aluminium titanate-mullite composites, Part 1, *J. Ceram. Soc. Japan*, 94, 44–50, (1986).
- ¹³⁴ Morishima, H., Kato, Z., Saito, K., Yano, K., Ootsuka, N.: Synthesis of aluminium titanate-mullite composite having high thermal shock resistance, *J. Mater. Sci. Letters*, 6, 389–390, (1987).
- ¹³⁵ Hasselmann, D.P.H.: Approximate theory of thermal stress resistance of brittle ceramic involving creep, J. Am Ceram. Soc., 50, (1967).
- ¹³⁶ Munz, D., Fett, T.: Mechanical behavior of ceramic materials, (in German), Werkstoffforschung und -technik, Band 8. Springer Verlag (1989).
- ¹³⁷ Hasselman, D.P.H.: Elastic energy at fracture and surface energy as design criteria for thermal shock, *J. Am Ceram. Soc.*, 46, 535–540, (1963).
- ¹³⁸ Hasselman, D.P.H.: Crack propagation under constant deformation and Thermal Stress fracture, *J. Fract. Mech.*, 7, 157-161, (1971).
- ¹³⁹ Kim, I.J., Gauckler L.J.: Excellent thermal shock resistant materials with low thermal expansion coefficient, *J. Ceram. Process. Res.*, 9, [3], 240, (2008).
- ¹⁴⁰ Aza, D., Richmond, S., White, C.: Compatibility relationships of periclase in the system CaO-MgO-ZrO₂-SiO₂, *Trans. J. Br. Ceram. Soc.*, **73**, [4], 109, (1974).
- ¹⁴¹ Kim, I.J.: Thermal shock resistance and thermal expansion behavior of Al₂TiO₅ ceramics prepared from electrofused powders, *J. Ceram. Process. Res.*, 1, [1], 57–63, (2000).