Influence of Aggregated Powder Structures on Sintering Behaviour of Multilayer Hydroxyapatite Laminates

E. Hahn*1, J. Hum1, J. Will1, K. Zuo2, D. Jiang2 and P. Greil1

1University of Erlangen-Nuremberg, Department of Materials Science (Glass and Ceramics) Martensstr. 5, D-91058 Erlangen, Germany
2Shanghai Institute of Ceramics, Chinese Academy of Sciences, The State Key Lab of High Performance Ceramics and Superfine Structures, 1295 Ding-Xi Rd, Shanghai 200050, China

received September 2, 2010; received in revised form October 20, 2010; accepted October 21, 2010

Abstract

Aqueous tape-cast slurries of hydroxyapatite with a solid loading of 32 vol% were prepared from various fractions of aggregated (mean particle size 4.7 – 5.6 μm) and dispersed powder (mean particle size 0.17 – 0.29 μm). Multilayer laminates were prepared and the shrinkage and density of the laminates sintered at 1250 °C were measured. While fractional density in the green laminates remains almost constant at 0.52, a pronounced increase in fractional sintered density from 0.96 to > 0.99 was observed with decreasing fraction of aggregated powder. Residual pore size and pore number density were reduced from 0.58 μm to 0.48 μm and 0.049 pores/μm² to 0.019 pores/μm², respectively. The multilayer laminates attained a mean bending strength of 118 ± 10 MPa measured with the bi-axial bending test. An osteosynthesis plate design was fabricated for demonstration of the potential of sintered multilayer laminates.

Keywords: Hydroxyapatite, laminate sintering, aggregated and dispersed powder

I. Introduction

Hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂, HA) ceramics are of considerable interest for clinical applications owing to the similarity of their crystal structure and chemistry to the inorganic mineral phase of bone and teeth 1, 2. Porous and dense HA are widely used as orthopaedic and dental implant materials as they elicit a favourable biological response and form a bond with the surrounding tissue 3. Dense HA is described as having a maximum microporosity of < 5 vol% with the micropores measuring < 1 μm in diameter and a crystallite size exceeding 200 nm 4. Depending on the manufacturing technique, the composition and the residual porosity, however, HA suffers from high brittleness (KIC ≤ 1 MPam¹/²) as well as low mechanical properties that may scatter in a wide range and have hindered the widespread use of HA implants in long-term load-bearing applications 5, 6. While dense stoichiometric HA may attain a high Young’s modulus of approx. 130 GPa derived from atomistic ab initio calculations and 147 ± 10 GPa measured by nanoindentation 7, increasing porosity and pore size owing to incomplete densification upon sintering reduce the values significantly to 35 – 103 GPa 8. Furthermore, compressive strength and flexural strength were reported to vary in a wide range from 200 – 900 MPa and 17 – 110 MPa, respectively 6, 8. Although strengthening and toughening concepts have been applied, such as dispersion of ductile particles (Ag), alumina platelets, zirconia particles, or carbon nanotubes and fibres, to form HA composites with higher toughness 9-13, it is desirable to minimize the porosity and size of pores to improve the mechanical properties of HA implants 14, 15.

Fabrication procedures for dense HA ceramics are quite diversified, including sintering and hot pressing of gel-derived or hydrothermally precipitated, spray-dried and calcined powders with particle sizes in the submicron to nanoscale range 16, 17. Major problems of sintering HA arise from the thermal decomposition above a critical temperature (which limits sintering temperature) and formation of secondary phases that may undergo further decomposition or hydrolysis reactions. Aggregation of submicron crystallite powders during drying and calcination can cause non-uniformity in the packing of particles in a green compact, and thus prevent full densification during sintering 18. To avoid retardation of densification during pressureless sintering, the Ca/P molar ratio has to be very near to the stoichiometric ratio of 1.67 19. Stoichiometric HA was found to remain stable in dry or moist air up to 1200 °C 20, 21. At temperatures in the range 1350 – 1500 °C, however, HA becomes unstable and decomposes to α-tricalcium phosphate (Ca₃(PO₄)₂), tetracalcium phosphate (Ca₄(PO₄)₅) and calcium pyrophosphate (Ca₂P₂O₇) 22. Moreover, it has been reported that CaO may form during sintering when the Ca/P molar ratio exceeds the stoichiometric composition (> 1.67) 21. Volume changes associated with the hydrolysis reaction (CaO + H₂O → Ca(OH)₂, ΔV/V₀CaO = + 101 %) and carbonate formation (Ca(OH)₂ + CO₂ → CaCO₃, ΔV/V₀Ca(OH)₂ = + 11 %)
when exposed to H₂O and CO₂ respectively, may generate residual stresses and induce microcrack formation, which reduces the modulus of rupture²⁵,²¹,²³,²⁴. If the Ca/P molar ratio of HA is lower than 1.67, β- or α-tricalcium phosphate (TCP) may form, giving rise to enhanced slow crack growth susceptibility and biomegradability of the HA ceramics. Thus, a high density of HA requires careful control of the HA composition, reduction of the sintering temperatures below the critical decomposition threshold and eventually external pressure to promote rapid densification (hot-pressing).

Reduction of the sintering temperature may be achieved by applying HA powders with submicron or even nanoscale particle size. Powders with particle diameters smaller than 1 μm, however, tend to form aggregate domains due to dominance of surface forces (van der Waals) over gravity, which upon heat treatment may form aggregated particles. During heating, non-uniform sintering may occur, which is likely to obstruct sintering. Differential stresses caused by local variation of the packing structure in a mixture of aggregate and dispersed powder tend to become higher when the ratio of densification to creep relaxation increases as is the case with decreasing particle size. Furthermore, analyses of differential sintering phenomena in inhomogeneous powder compacts have shown that, with decreasing particle size, stresses generated at density transitions, e.g. interfaces between aggregated and dispersed packing regions, may give rise to redistribution of porosity and even attain critical values to cause microstructure defect formation (flaws, cracks). Thus, even single-phase and stoichiometric HA powders were reported to achieve only densities which did not exceed 93% – 98% upon pressureless sintering.

The aim of this study was to investigate the influence of aggregated powder structures on the sintering of multilayer HA laminates. Layered and thin-walled HA ceramics derived from tape-cast and extrusion processing are becoming interesting for fabrication of HA implants with optimized structure design such as pore gradient structures and multilayer composites or microchannelled ceramics. Thus, there is an incentive to develop HA films with controlled porosity as well as multilayer laminates with high fractional density by pressureless sintering. Bimodal HA powders containing different fractions of a pre-calcined aggregated powder in a matrix of dispersed submicron powder were prepared. Tapes were manufactured by doctor-blade casting and laminated by cold compression (30 °C) to form multilayer stacks. No external pressure was applied and the sintering temperature was limited to 1250 °C to avoid thermal decomposition of the HA. Residual porosity, density, and modulus of rupture were characterized and discussed in respect of the powder size distribution ratios.

II. Experimental Procedures

1. Powder processing

Bimodal HA slurries were prepared by combining different fractions of agglomerated HA and of dispersed nanoscale HA. The aggregated powder (denoted C) was obtained by calcination of the as-received HA powder (Hydroxyapatite for bioceramics, Merck KGaG, Darmstadt, D, specific surface area of 68.6 m²/g, Ca/P molar ratio of 1.67) at 900 °C for 2 h. After calcination a mean particle size of approximately 3.9 μm was measured by means of laser granulometry (Master Sizer 2000, APA 2000 with Hydro 2000S; Malvern Instruments, Worcestershire, GB) and the specific surface area analysed with the BET method (N₂ adsorption, ASAP 2000, Micromeritics, Norcross, USA) was reduced to 11.2 m²/g. The fine powder (denoted F) was prepared by milling the calcined HA powder in an attritor mill filled with zirconia balls (diameter ~ 100 – 200 μm). A milling time of 3 h proved long enough to ensure disintegration of the weakly granulated HA powder and to yield a submicron HA powder with an almost monomodal particle size distribution.

Tape-casting slurries containing different fractions of C and F powders were mixed and homogenized in one processing step for 24 h in a shaker mixer (Turbula, W.A. Bachofen, Basel, CH). A typical tape-casting slurry was composed of 58 wt% (32 vol%) HA powder, 21.8 wt% PVA-based binder/plasticizer (Dulacol B4014, Zschimmer und Schwarz, Lahnstein, D, 55 wt% active binder in aqueous solution), 2 wt% dispersant (NH₄-Polycarboxylate, Melpers 3440, BASF, Trostberg, D), and distilled water. Grain size distributions were measured after mixing (Master Sizer 2000, APA 2000 with Hydro 2000S; Malvern Instruments, Worcestershire, GB). A fine-to-coarse powder size ratio λₚ was determined by integration of the two monomodal grain size distribution functions Hₕₕ(G) and Hₙ(C) of the coarse (aggregated) and of the fine HA powder fractions, respectively, according to

$$\lambda_p = \frac{\int_0^{G_{MAX}} H_n(G) \, dG}{\int_0^{G_{MAX}} H_c(G) \, dG}$$

The experimentally measured distributions in the two separate size ranges G < 0.7 μm and G > 0.7 μm were fitted to a log normal distribution (Origin 7.5, OriginLab Corp. Northampton, USA)

$$H_{C,F}(G) = y_0 + \frac{A}{G \sqrt{2 \pi}} \exp \left\{ - \frac{\ln \left(\frac{G}{G_0} \right)^2}{2s^2} \right\}$$

where y₀, A, and s are the offset, the normalizing factor and the standard deviation, respectively. The fraction of coarse (aggregated) powder is given as λₚ = 1 - λₚ.

2. Tape casting, lamination and sintering

Tapes were prepared with a double-chamber doctor blade casting head on silicon-coated PET support foil. The casting speed was 700 mm/min and the distance between the blade and the casting head was adjusted to 200 μm, resulting in a mean thickness of the cast tapes of approximately 100 μm (i.e. shrinkage of tape in thickness reaches...
The particle morphology of the HA powders was analysed with SEM (Quanta 200, FEI, Eindhoven, NL). Ca and P contents before and after calcination were determined by means of ICP analysis (Spectro Fleming Modula, Spectro Analytical Instruments, Kleve, D). The crystalline phase composition (HA - JCPDS 009-0432, β-TCP – JCPDS 009-0169) was determined with HT-XRD (XRD, Siemens, D 500 equipped with an Anten Paar HTK 10 chamber, D). Powder from debindered (600 °C) ceramics tapes consisting of dispersed nanoscale HA was analysed by means of HT-XRD to cover the temperature-dependent phase composition of HA. XRD spectra were measured at 1150 °C, 1200 °C, 1250 °C, 1300 °C and 1350 °C, after 1 h dwell time. Length, width, height, and mass of green specimens were measured for density calculation. The sintered samples (30 mm × 6 mm × 1.7 mm) were cut from HA laminates (λF = 0.97 and λF = 0.1). The linear shrinkage caused by sintering of the longest dimension of the sample was detected using a connecting rod dilatometer. The rod and the substrate supporting the sample consisted of Al2O3. The shrinkage data was corrected for the thermal expansion of Al2O3. Up to 600 °C a heating rate of 1 K/min was applied to allow organic binder, deflocculant and adhesive burnout. Above 600 °C a heating rate of 1 K/min was applied. The multilayer laminate specimens were sintered in a heating and cooling rate of 3.6 K/min was applied to allow cold lamination bonding at 30 °C. This technique is based on gluing the adjacent tapes by means of an adhesive film at room temperature under a low pressure39. A single-step thermal annealing process was applied which included a heating to 600 °C with a dwell time of 2 h a heating rate of 3.6 K/min was applied. Above 600 °C up to 1250 °C a heating cooling rate of 3.6 K/min was applied. The shrinkage data was corrected for the thermal expansion of Al2O3. Up to 1250 °C, 1200 °C, 1250 °C, 1300 °C and 1350 °C, after 1 h dwell time. Length, width, height, and mass of green specimens were measured for density calculation. The sintered density was measured with the Archimedes method. The microstructure of HA laminate cross-sections perpendicular to the laminate stacking was analysed with SEM. Prior to examination the specimen surface was sputtered with gold.

The modulus of rupture of the multilayered HA ceramics was measured by means of biaxial bending using a ring-on-ring test40 (Instron 4204, Instron Corp., Canton, MA, USA). Measurements were performed with load and support rings of 8.2 mm and 18 mm in diameter, respectively, and a cross-head velocity of 0.5 mm/min. Samples were used as sintered without grinding and polishing. Fracture stress σf was derived from the specimen geometry, the loading geometry and the load applied Fmax according to

\[
\sigma_f = \frac{3F_{\text{max}}}{2\pi r^2} \left(1 - \nu\right) \left(\frac{r_2^2 - r_1^2}{\left(1 + \sqrt{2}\right)/4}
ight) + \left(1 + \nu\right) \ln \frac{r_2}{r_1}
\]

where \(\nu\) is the Poisson ratio, \(r_1\) is the radius of the load-ring, \(r_2\) is the radius of the support ring. The modulus of rupture of the multilayered HA ceramics was measured by means of biaxial bending using a ring-on-ring test40 (Instron 4204, Instron Corp., Canton, MA, USA). Measurements were performed with load and support rings of 8.2 mm and 18 mm in diameter, respectively, and a cross-head velocity of 0.5 mm/min. Samples were used as sintered without grinding and polishing. Fracture stress \(\sigma_f\) was derived from the specimen geometry, the loading geometry and the load applied \(F_{\text{max}}\) according to

\[
\sigma_f = \frac{3F_{\text{max}}}{2\pi r^2} \left(1 - \nu\right) \left(\frac{r_2^2 - r_1^2}{\left(1 + \sqrt{2}\right)/4}
ight) + \left(1 + \nu\right) \ln \frac{r_2}{r_1}
\]

where \(\nu\) is the Poisson ratio, \(r_1\) is the radius of the load-ring, \(r_2\) is the radius of the support ring, \(e\) is the edge length of the quadrangular samples, \(b\) is the sample height. Compared to uniaxial four-point or three-point bending testing, the biaxial concentric ring test is simpler to perform because the maximum stressed surface area is confined within the central region of the disc specimen and effects of edge preparation are minimized.

III. Results and Discussion

1) Powder composition and tape density

Chemical analysis confirmed a stoichiometric Ca/P ratio of 1.672 measured in the as-received HA powder which remained unchanged upon calcination at 900 °C for 2 h. Fig. 1 shows SEM micrographs of the as-received and of the calcined HA powder, respectively. The aggregates in the as-received HA powder consist of crystallites of a mean size \(G_{\text{cry}} = 28 \text{ nm}\) as calculated from the specific surface area \(\delta_{\text{V}} = 68.6 \text{ m}^2/\text{g}\) and the density \(\rho = 3.156 \text{ g/cm}^3\) of HA. From XRD line broadening a crystallite size of \(G_{\text{cry}} = 34 \text{ nm}\) was derived. Laser granulometry of both HA powders resulted in a mean aggregate size \(G_{\text{agg}}\) of approximately 3.9 μm, indicating that the mean aggregate size remained almost unaffected by the calcination treatment. In contrast, coarsening of the crystallites resulted in a pronounced increase of the crystallite size after calcination (150 nm (specific surface area) and 80 nm (XRD)). Stoichiometric HA with a Ca/P ratio of 1.67 was reported to remain stable during heat treatment up to 1200 °C. HT-XRD (not shown) reveals HA as the only crystalline phase present up to 1250 °C. The average heating rate during HT-XRD measurement was approximately 0.6 K/min. At 1300 °C traces of γ-TCP were detected indicating that the decomposition reaction of HA to TCP (Ca10(PO4)3(OH)2 → Ca9(PO4)2 + CaO + H2O) commences between 1250 – 1350 °C. In order to prevent formation of decomposition phases, the sintering temperature of the laminate ceramics was therefore limited to a maximum temperature of 1250 °C. Furthermore, previous examinations of the grain growth behaviour of HA have shown a moderate grain growth rate at this temperature which accelerated significantly at higher temperatures, resulting in a decrease in toughness and strength.
Two distinct grain size maxima may be separated as expected from mixing of the fine and coarse fractions. From the areas under the $H_{C,F}(G)$ curves the fraction of fine powder λ_F was derived according to Eq. (1) for each powder mixture: $\lambda_F = 0.52, 0.56, 0.57, 0.72$, and 0.97.

Both separate distributions may well be fitted to log normal distributions (Table 1). The mean particle size, G_{50}, derived from distribution analyses ranges from 4.7 - 5.6 μm for the coarse powder fraction $H_C(G)$ and from 0.17 - 0.29 μm for the fine powder fraction $H_F(G)$. While powder $\lambda_F = 0.52$ is bimodal with approximately equal coarse and fine powder fractions, $\lambda_F = 0.97$ equals an almost monomodal powder size distribution.

Table 1: Grain size distributions of tape cast slurries prepared from powder mixtures with various fine grain fractions λ_F measured by means of laser granulometry.

<table>
<thead>
<tr>
<th>λ_F</th>
<th>0.52</th>
<th>0.56</th>
<th>0.57</th>
<th>0.72</th>
<th>0.97</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine fraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G_{50}</td>
<td>0.279</td>
<td>0.289</td>
<td>0.286</td>
<td>0.211</td>
<td>0.168</td>
</tr>
<tr>
<td>s</td>
<td>0.733</td>
<td>0.750</td>
<td>0.713</td>
<td>0.552</td>
<td>0.502</td>
</tr>
<tr>
<td>y_0</td>
<td>-0.651</td>
<td>-0.776</td>
<td>-0.909</td>
<td>-0.222</td>
<td>-1.077</td>
</tr>
<tr>
<td>A</td>
<td>2.055</td>
<td>2.299</td>
<td>2.446</td>
<td>1.955</td>
<td>2.430</td>
</tr>
<tr>
<td>Coarse fraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G_{50}</td>
<td>4.722</td>
<td>5.128</td>
<td>5.672</td>
<td>5.526</td>
<td>4.730</td>
</tr>
<tr>
<td>s</td>
<td>0.701</td>
<td>0.720</td>
<td>0.742</td>
<td>0.712</td>
<td>0.486</td>
</tr>
<tr>
<td>y_0</td>
<td>-0.101</td>
<td>-0.024</td>
<td>-0.051</td>
<td>-0.039</td>
<td>-0.061</td>
</tr>
<tr>
<td>A</td>
<td>26.173</td>
<td>25.255</td>
<td>26.970</td>
<td>16.547</td>
<td>0.957</td>
</tr>
</tbody>
</table>

Fig. 3 shows the green density of the HA multilayer laminates as a function of the powder particle size ratio λ_F. The green density remains almost independent of the variation of λ_F at a constant level of approximately 0.52. From the principles of bimodal mixtures of spheres one should expect a maximum packing density (filling of small interstitial pores) at a coarse/fine particle volume fraction of approximately 0.23 which decreases almost linearly with increasing fraction of fine particles. It was found that the packing density increases as the size ratio increases to ~ 15, but is relatively unchanged at higher size ratios. Since the aggregates of the coarse powder fraction $H_C(G)$ are not dense particles, but exhibit even a lower fractional density of 0.41 compared to 0.52 in the fine-grained powder fraction, it is clear that density in the green laminates should not decrease but remain constant or even increase slightly with increasing λ_F from 0.52 to 0.97. The expected density as a function of λ_F was calculated according to the fractal-like concept of Funk and Dinger:

$$ CPFT = \frac{G^* - G_S}{G_{L} - G_S} \left(\frac{1}{G^*} - \frac{1}{G_{L}} \right) $$

where $CPFT$ is the cumulative percent finer than G, G is the measured particle size, G_L is the largest particle diameter, G_S is the smallest particle diameter, and n is the distribution modulus (0.37). The fractional density ρ^* (e.g. packing density) is obtained from the cumulative volume fraction finer than G ($CVFT$) ($\rho^* = 1 - CVFT$ at G_S (100)). The fractional densities calculated from Eq. (4) are shown.
as the dashed lines in Fig. 3. For the case of the coarse particles to be fully dense e.g. the fractional particle density $\rho_{agg}^o = 1$, a maximum in fractional density is calculated from the measured particle size distributions to occur at a fine particle fraction $\lambda_F = 0.2$ which decreases with increasing λ_F. (Fig. 3). In contrast, the experimental densities measured on the green specimens were found not to change significantly with increasing λ_F. Taking into account that the aggregate particles are porous (Fig. 1), the measured values of packing density are well reproduced by the calculated curve for $\rho_{agg}^o = 0.74$ (the fractional packing density of the aggregate particles, ρ_{agg}^o, was estimated from $\rho_{agg}^o = 1 - (\rho_{id}^o - \rho_{gr}^o)$ where ρ_{id}^o is the calculated ($\rho_{id}^o = 0.8$) (assuming dense particles) and ρ_{gr}^o is the measured fractional green density ($\rho_{gr}^o = 0.54$) of the powder fraction $\lambda_F = 0$, respectively).

(2) Sintering

Fig. 4 shows the sintering strain and sintering strain rate of specimens with the grain size distribution functions $\lambda_F = 0.52$ and $\lambda_F = 0.97$. Accelerated sintering shrinkage started at approximately 950°C with a distinct maximum of shrinkage rate at $1200 - 1250^\circ$C. The bimodal heterogeneous powder microstructure ($\lambda_F = 0.52$) shows a slight shift of the strain rate curve to higher temperatures ($\Delta T = 20 - 45^\circ$C) and a reduction of the maximum value by 13.7% compared to the homogeneous fine powder sample ($\lambda_F = 0.97$). Accordingly, a higher total sintering strain of 19% ($\lambda_F = 0.97$) compared to 16% ($\lambda_F = 0.52$) was observed, which resulted in a sintered density of 0.99 compared to 0.96, respectively.

![Fig. 4: Sintering strain and sintering strain rate of HA laminate prepared from powders with the lowest $\lambda_F = 0.52$ and the highest $\lambda_F = 0.97$ fine powder fraction.](image)

Experimental observations have shown that the final density of sintered ceramic composite depends strongly on the initial packing density of the powder matrix. In particular, density fluctuations were recognized as one of the major problems in achieving a high sintered density. Following analysis of the sintering behaviour of bimodal powder compacts derived by Raj and Bordia, the total change in density of a sphere (aggregate) – matrix composite, $\Delta \rho_t$, with both regions sintered, but at different rates, can be expressed by

$$\Delta \rho_t = \left[1 - \exp\left(-k t \right) \right] + \left[k \left(\rho_t - \rho_id \right) \right] \left[\exp\left(k t \right) - \exp\left(-k t \right) \right]$$

where t is the time normalized with respect to the time constant for densification ($\tau = \tau_a \tau_s$ with t the time and τ_a the time required to reach 64% of the difference between the theoretical and the green density), and ρ_t^F and ρ_t^C are the sintering stresses in the fine and the coarse powder packing regions, respectively. The variables k and k' express the ratio of the creep rate to the densification rate in the fine powder fraction and in the coarse powder aggregates (based on constitutive laws, expressions for k and k' were derived for viscous sintering). The variable r denotes the ratio of the sintering rate in the fast sintering region to the sintering rate of the slow sintering region and may characterize the density fluctuations in the green powder microstructure (e.g. "heterogeneity"). The normalized density change is defined as

$$\bar{\Delta \rho_o} = \frac{\rho(t) - \rho_o}{\rho_o - \rho_g}$$

where $\rho(t)$ is the time-dependent density, ρ_g is the green density and ρ_o the density of the dense HA ($\rho_{th} = 3.156$ g/cm3). If $k, k' \to \infty$, instantaneous relaxation reduces the incompatibility stresses to zero and Eq. (5) equals the simple rule of mixture which defines an upper bound for densification

$$\bar{\Delta \rho_o} = \lambda_F \left[1 - \exp\left(-t \right) \right] + \left(1 - \lambda_F \right) \left[1 - \exp\left(\frac{-t}{r} \right) \right]$$

Similarly, models referring to the effects of transient back stresses generally predict a linear relation between the volume fraction of inclusion and retardation of sintering rate of the composite compared to that of the inclusion-free matrix. Since the difference in fractional density between the aggregate fraction (0.74) and the dispersed matrix fraction (0.52) is relatively small, the rule of mixture should apply to the HA multilayer laminate sintering at least to a first approximation.

Fig. 5 shows the experimentally measured sintered density and the values calculated according to Eq. (7) (taking $\rho_g^o = 0.52$, $\rho_{th} = 3.156$ g/cm3, $\tau = 4$ and $r = 2$). In contrast to the green density (Fig. 3), the sintered density of HA multilayer laminates increased almost linearly with increasing λ_F and reached a maximum value of 0.99 for $\lambda_F = 0.97$. Though the model discussed above does not account for the specific rate-controlling densification mechanisms of HA, the calculated curve reproduces well the effect of increasing powder packing heterogeneity caused by the aggregated coarse powder fraction, i.e. decreasing λ_F. As a consequence, powder processing of HA should aim to generate a homogeneous powder packing structure in order to attain a dense microstructure by means of pressureless sintering.
(3) Microstructure and strength

Fig. 6 shows a laminate cross-section perpendicular to the laminate stacking \((\lambda_F = 0.97) \). The mean thickness of the cast tapes is approximately 100 μm. Subtracting a sintering shrinkage of 18 %, at least two interphases should be apparent in the micrograph (Fig. 6). No microstructural inhomogeneity marking interphases between two HA layers can be detected, indicating an excellent consolidation of the HA tapes. Fig. 7 shows laminate cross-sections perpendicular to the laminate stacking of specimens with the grain size ratio values \(\lambda_F = 0.52 \) and 0.97. In dense HA ceramics the grain size and the remnant microporosity strongly influence the mechanical properties both in compression and in tension. The crystallite size of the sintered specimen \((\lambda_F = 0.97) \) was measured from SEM micrographs of fracture surfaces (Table 2). Only moderate growth of the crystallite size was observed during sintering at 1250 °C ranging from 1.85 (\(\lambda_F = 0.52 \)) to 1.19 μm (\(\lambda_F = 0.97 \)). Exaggerated grain growth with grain sizes exceeding 10 μm were analyzed in HA sintered at temperatures ≥1350 °C with the grain size increasing exponentially with the sintering temperature 43.

The mean pore size and pore density (number of pores per area) were determined by means of optical analysis of micrographs taken from cross-sections perpendicular to the interfaces. It was found that the mean pore diameter decreased from 0.58 μm to 0.48 μm with \(\lambda_F \) increasing from 0.52 to 0.97. Simultaneously, the mean areal pore density decreased from \(49 \times 10^3 \) (pores/mm²) to \(19 \times 10^3 \) (pores/mm²), which corresponds to a reduction of mean pore distance from 4.5 μm to 7.3 μm, respectively.

Fracture strength values of sintered and hot-pressed single phase HA ceramics reported in the literature vary in a wide range from 80 – 120 MPa 4,6. Remnant porosity due to incomplete densification, microstructure defects from processing as well as thermal decomposition of HA are commonly considered to cause reduced strength as well as a low Weibull modulus, i.e. enhanced scattering. Mechanisms underlying temperature-strength interrelations for dense (>95 % dense, pores closed) HA were investigated by comparative assessment of temperature effects on tensile strength, Weibull modulus, apparent density, decomposition 51. Significant dehydroxylation occurred above 800 °C. Strength peaked at ~80 MPa just before the attainment of closed porosity (~95 % dense). For higher temperatures (closed porosity), the strength dropped sharply to ~60 MPa due to the closure of dehydroxylation pathways, and then stabilized at ~60 MPa. At very high temperatures (>1350 °C), the strength dropped catastrophically to ~10 MPa, corresponding to the decomposition of HA to tricalcium phosphate and the associated sudden release of the remaining bonded water.

<table>
<thead>
<tr>
<th>(\lambda_F)</th>
<th>Mean grain size (μm)</th>
<th>Fractional density</th>
<th>Mean pore size (μm)</th>
<th>Areal pore density (1/mm²)</th>
<th>Mean pore distance [μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.52</td>
<td>1.85</td>
<td>0.518</td>
<td>0.64</td>
<td>(103 \times 10^3)</td>
<td>3.1</td>
</tr>
<tr>
<td>0.56</td>
<td>1.73</td>
<td>0.522</td>
<td>0.51</td>
<td>(142 \times 10^3)</td>
<td>2.6</td>
</tr>
<tr>
<td>0.57</td>
<td>1.74</td>
<td>0.534</td>
<td>0.47</td>
<td>(131 \times 10^3)</td>
<td>2.8</td>
</tr>
<tr>
<td>0.72</td>
<td>1.47</td>
<td>0.518</td>
<td>0.42</td>
<td>(112 \times 10^3)</td>
<td>2.9</td>
</tr>
<tr>
<td>0.97</td>
<td>1.19</td>
<td>0.522</td>
<td>0.43</td>
<td>(57 \times 10^3)</td>
<td>4.2</td>
</tr>
</tbody>
</table>

The uniform microstructure and low residual porosity in the sintered HA multilayer laminate specimens give rise to enhanced mechanical properties. A mean biaxial bending strength of 118 ± 10 MPa was measured for the HA specimen. Significantly lower biaxial bending values of failure stresses of 24 ± 5 MPa were reported from single-phase HA isostatically pressed and sintered at 1250 °C 52. Although the amount of reduction of failure stress in the concentric ring test compared to four-point-loading test is dependent on the failure statistics (i.e. Weibull), previous results indicated that the concentric ring test provides a conservative value (for sintered \(\text{Al}_2\text{O}_3 \) the biaxial strength was measured approx. 8 – 9 % lower than in uniaxial four point bending testing 53).

Multilayer HA ceramics with improved mechanical behaviour might become more interesting for replacement of metal implants in low or mild loading situations for short- and long-term support in bone regeneration. Major advantages are seen in the accelerated formation of a bone-bonding interface, no necessity for a second operation to remove the implant, and no visualization difficulties in monitoring tissue regeneration with magnetic resonance imaging. In order to demonstrate the sintering capability of the multilayer laminate ceramics prepared from HA powder \((\lambda_F = 0.97) \) an osteosynthesis plate design (56 mm×19.8 mm×1.25 mm) for fracture stabilization was manufactured. Diamond machining of the plate containing one row of four holes for screws (hole diameter 4.5 mm) was accomplished by diamond cutting and
drilling of the green laminate. Owing to the excellent laminate bonding strength, no interface delamination damaging occurred during machining and sintering. Thus, multilayer laminate processing offers high potential for transfer to laminated object manufacturing (LOM rapid prototyping), which may offer great flexibility for manufacturing of customized designs and of multiphase calcium phosphate ceramics with graded structure 36.

Fig. 6: Cross-section covering two layer interphases of HA laminate sintered at 1250 °C for 2 h.

Fig. 7: SEM micrographs of HA laminate sintered at 1250 °C for 2 h: (A) λF = 0.52 and (B) λF = 0.97.

IV. Conclusions

Hydroxyapatite multilayer laminates were processed by means of aqueous tape casting and pressureless sintering. With decreasing fraction of aggregated HA powder different sintering in the non-uniform powder microstructure decreases and densification is promoted. HA powders with a stoichiometric molar Ca/P ratio and a monomodal submicron particle size distribution were demonstrated to achieve fractional densities > 99 % at a sintering temperature of 1250 °C. Owing to smaller pore sizes and lower pore number in the sintered microstructure a maximum bidirectional bending strength of 118 MPa was reached. Multilayer laminating processing offers great flexibility in implant design and may be applied in rapid prototyping techniques.

Acknowledgements

The authors gratefully acknowledge the financial support from the German Research Foundation (GR 961/28-1).

References

