

J. Ceram. Sci. Tech., 02 [01] 55-60 (2011) DOI: 10.4416/JCST2010-00020 available online at: http://www.ceramic-science.com © 2011 Göller Verlag

Sintering and Mechanical Properties of AlMgB₁₄ Composite Materials

M. Herrmann*1, R. Bodkin², N. J. Coville², I. Sigalas³ and M. Thiele¹

¹Fraunhofer Institute of Ceramic Technologies and Systems, Dresden, Germany
²DST/NRF Centre of Excellence in Strong Materials and Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa.
³DST/NRF Centre of Excellence in Strong Materials at the School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, South Africa.
received May 26, 2010; received in revised form July 21, 2010; accepted September 24, 2010

Abstract

Different AlMgB $_{14}$ composite materials were prepared from pre-reacted AlMgB $_{14}$ and starting elemental powders by hot pressing. Only slightly different densification behaviours were found for the two types of starting materials. Full densification without decomposition was achieved only with a hot pressing pressure of 75 MPa. Different additives were tested to improve densification. The influence of the additives on the densification was found to be minor. A strong increase in hardness was observed for materials with Si, TiC, WC, TiB $_2$ additions. The carbides react with the AlMgB $_{14}$ during sintering, forming TiB $_2$ and WB $_2$ or their solid solutions.

Keywords: Boride, sintering, microstructure, AlMgB₁₄

I. Introduction

Modern industry operates increasingly under extreme circumstances, demanding materials that exhibit high wear resistance under different conditions. Therefore the search for new super-hard and wear-resistant materials is a main thrust in the field of materials development. To date, super-hard materials have been based on diamond and cubic boron nitride. However, a disadvantage is that high pressure (several GPa) is necessary for the production of these materials.

Hardness approaching the microhardness of cBN was found for several boron-rich compounds: (B_4C^1, B_6O) (45 GPa measured on single crystals) $^{2-4}$ $B_{22}O$ (60 GPa $HV_{0.08}^5$) or doped ß-rombohedral boron with microhardness up to 45 GPa 6 . The boron-rich compounds are all based on the B_{12} icosahedral units. Another compound having a similar structure is $AlMgB_{14}^{7}$.

The hardness of pure nanocrystalline AlMgB₁₄ has been reported to range between 32–35 GPa ⁸. The microhardness of the crystals has been measured and values of 25.8 GPa recorded ⁹. Computational results suggest that the high hardness of AlMgB₁₄ is primarily related to the intrinsic hardness of the B₁₂ icosahedral units and is less related to the linkage of the B₁₂ icosahedra by Al and Mg ¹⁰. An analysis of the electron density distribution reveals that the magnesium and aluminium atoms are predominantly ionically bonded to the icosahedra. The calculations also show that the most stable composition is not the stoichiometric one and in the stable structure only about ³/₄ of the position of the cation sites are occupied ¹¹. This has also been confirmed by investigations of

the crystal structures 7,12 . In summary, a consideration of all the physical data indicates that the exact composition of AlMgB₁₄ is not completely known. Therefore, in this paper AlMgB₁₄ will be used as the synonym for Al_{1-x}Mg_{1-x}B₁₄ (x < 0,25).

Pure $MgAlB_{14}$ has been reported to have a Vickers hardness (HV₁) value of 27.9 GPa ¹². It has been observed that AlMgB₁₄ composites containing TiB₂ and Si have hardness values exceeding that of AlMgB₁₄ ⁸ (35 – 46 GPa), but unfortunately the applied load used in the measurement was not given. No increase in the hardness value on addition of up to 50 wt% of TiB₂ was found. Ahmed *et al.* ^{13,14} have observed an increase of the hardness and wear resistance with the addition of up to 80 wt% TiB₂. The reason for this hardening is still not clear. The fracture toughness of the materials was determined as 3.0 – 3.5 MPam^{1/2} for the pure material ^{13, 15} with a slight increase on the addition of TiB₂ ¹³. The addition of TiC resulted in a reduction of the hardness value ¹³.

The synthesis of AlMgB₁₄ has been performed based on high-energy milling of the elemental powders in hardened stainless steel vials for 12 to 20 hours ^{8,15}. The most common impurity phase observed by Cook *et al.* ⁸ was the spinel phase MgAl₂O₄ and Fe contaminants. The lowest impurity level observed was between 2 and 10 vol% These powders were hot pressed at 1400 °C to 1500 °C and 100 – 140 MPa under a He atmosphere ⁸ or densified by spark plasma sintering (SPS) at 1400 to 1500 °C at 125 and 63 MPa pressure respectively ¹⁵.

Recently the phase composition in the system Al-Mg-B was investigated. The data showed that AlMgB₁₄ is in equilibrium with liquid Al at temperatures higher than 1200 °C ¹⁶. Therefore the possibility exists that an excess

^{*} Corresponding author: mathias.herrmann@ikts.fraunhofer.de

of Al could be used as a sintering additive for liquid phase sintering.

From the above overview, it is clear that materials based on AlMgB₁₄ could be suitable materials for wear applications. However, the existing data regarding the synthesis, composition, structure and properties of these materials does not provide a basis for their reproducible preparation. The aim of this paper was to prepare and investigate the properties of AlMgB₁₄ as a pure material as well as to determine its interaction with different suitable reinforcing components.

II. Experimental

Two sets of AlMgB₁₄ materials were prepared:

- The first set of materials was produced starting with the elemental powders. It was surmised that the chemical reaction could accelerate the densification. These materials were labelled E.
- The second set of materials was prepared by densification of a pre-reacted AlMgB₁₄ powder. These samples are labelled PR.

All materials and the pre-reacted powder were prepared from powders of Al (50 µm grain size, 99.9 % pure, Saarchem), Mg (70 µm grain size, 99.9 %, Saarchem) and B (2 - 5 µm grain size, 99.5 % pure, Johnson Matthey). The reinforcing components used were TiB₂ (1-2 µm grain size, HC STARCK) and WC (1-2 µm grain size, HC STARCK). Table 1 contains the composition data for the AlMgB₁₄ materials prepared from the elemental powders (Set 1). All samples (Table 1) were prepared from the elemental powders by wet milling in methanol for 2 hours in an Ar atmosphere in a planetary ball mill with WC milling media (Pulverisette 5, Fritsch). Milling in Ar helps reduce the oxidation of the AlMgB₁₄, but oxidation cannot be completely avoided. Therefore the AlMgB₁₄ powders always contain some oxygen owing to the surface oxide layers of the powders. This resulted in the formation of MgAl₂O₄. In the case of our experiments the MgAl₂O₄ formed after hot pressing was 8 wt% (corresponding to 4 vol%). This is consistent with results reported by Lewis et al. 17. The use of methanol as milling media also reduces the amount of oxygen in the sample by removing the B₂O₃ present on the surface of B or formed as a result of oxidation during milling.

Table 1: Mass percentages for AlMgB₁₄ materials.

Name	Composition, wt%				
	Al	Mg	В		
E	13.3	12.0	74.7		
ES	19.2	13.6	67.2		
ES3Al	21.5	13.2	65.3		
ES5Al	23.0	13.0	64.0		
ES10Al	26.5	12.4	61.1		
Pre-reacted powder	19.1	13.6	67.2		

The effect of the formation of MgAl₂O₄ on the ratio of the elements in the material has to be taken into account. The material with the corrected composition is labelled ES or in the case of the pre-reacted powder, PRS. Additionally, materials were prepared by addition of an excess of 3, 5 or 10 wt% aluminium to the reactants (Table 1).

Once the milling cycle was completed the powder was removed from the milling vessel and the solvent was removed in a rotary evaporator. The powder was sieved through a 38-µm sieve.

The pre-reacted powder was prepared by reaction of the stoichiometric amount of the elements at 1400 °C for 1 h in an Ar atmosphere.

XRD analysis of the powders showed that they contained only AlMgB₁₄ and some MgAl₂O₄. This powder was additionally milled for 2 h. The mean grain size after two hours was 7 μ m. Increasing the milling time resulted in the formation of smaller grain sizes, but also a higher content of WC impurity, the WC coming from the milling process. SEM analysis of the pre-reacted powder showed that the size of the crystallites was in the range of $1-2 \mu m$ and that the grains are agglomerated (Fig. 1).

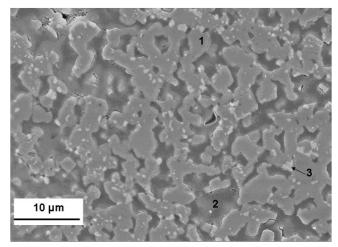


Fig. 1: SEM Micrograph of the polished cross-section of the prereacted powder before milling (the hard powder compact was infiltrated by mounting resin and polished; 1- AlMgB₁₄, 2- resin, 3-MgAl₂O₄)

The compositions of the composites investigated are listed in Table 2. The amount of the additional components was chosen such that they form MB₂ phases with the same volume content (20 vol%), e.g. 25.6 wt% TiC 30 wt% TiB₂. Therefore the PRS 30TiB₂ and PRS 25.8TiC samples are directly comparable. The added carbides are not stable and react with AlMgB₁₄, forming less boronrich borides with lower hardness. To compensate for this decomposition in some of the materials, additional B was added, e.g. the amount of boron in PRS25.8TiC+B was calculated on the basis of the following reaction:

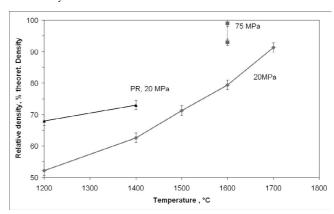
 $TiC + 6B \rightarrow TiB_2 + B_4C$.

The mixtures were additionally milled for 2 h to mix the pre-reacted powder with the additives. Also the material with no additives was milled for 2 h to allow direct comparison with the above data. The resulting mean grain size of all the samples was 2 µm. The procedure for the powder preparation was the same as that used for the synthesis of the elemental powders.

Table 2: Compositions for the composites.

Composite	Pre-re- acted AlMgB ₁₄ powder	Additive	added B	Phase composition after sintering
	Wt%	Wt%	Wt%	
PRS	100.00			AlMgB ₁₄ , MgAl ₂ O ₄ *, W ₂ B ₄ *
PRS 5Si	95.00	5.00	0.00	AlMgB ₁₄ , MgAl ₂ O ₄ *, W ₂ B ₄ *
PRS 30TiB ₂	70.00	30.00	0.00	AlMgB ₁₄ , (Ti,W)B ₂ MgAl ₂ O ₄ *
PRS 25.8TiC	74.16	25.84	0.00	AlMgB ₁₄ , (Ti,W)B ₂ MgAl ₂ O ₄ *
PRS 25.8TiC+B	57.90	20.20	21.90	AlMgB ₁₄ , (Ti,W)B ₂ , MgAl ₂ O ₄ *
PRS 46(WC TiB ₂)	53.85	46.00	0.00	AlMgB ₁₄ , (Ti,W)B ₂ , W ₂ B ₄ , MgAl ₂ O ₄ *
PRS46(WC TiB ₂)+B	46.20	39.60	14.20	AlMgB ₁₄ , (Ti,W)B ₂ , W ₂ B ₄ , MgAl ₂ O ₄ *
PRS+30WC	70.00	30.00		$\mathrm{AlMgB}_{14}, \mathrm{W}_{2}\mathrm{B}_{4}, \ \mathrm{MgAl}_{2}\mathrm{O}_{4}^{\ *}$

^{*} present in small amounts


The samples were hot pressed (HP20; Thermal Technology) in a hBN-lined graphite die in an argon atmosphere at temperatures up to 1700 °C and pressures of 20 – 70 MPa for 1 hour. The various phases were measured by X-ray diffraction (XRD 7, Seifert FPM; step size 0.02°, 20 range 12-110°). Mounted samples were polished with a 9- μ m diamond grit, a 6- μ m diamond grit, a 3- μ m diamond grit and finally with a 1- μ m diamond grit, all at 300 rpm.

Polished samples were analysed with Vickers hardness testers. The hardness was determined at a load of 98 N. Fracture toughness was evaluated based on indentation fracture toughness measurements as in ^{14,15} using the Anstis formula ¹⁸. The elastic constant was taken from ^{19,24}. The ratio of c/a in the measurements was between 2.5 and 3. The authors realize that the fracture toughness measurement method is not the standard one and gives values which can be systematically shifted in comparison to the values determined with the standard method ²⁵, but it allows at least comparison of the materials with the data observed in the literature based on the same method ^{12–15}. Bending bars for the accurate SEVNB method were not available. Therefore further fracture toughness measurements are necessary.

III. Results and Discussions

The synthesis of AlMgB $_{14}$ was achieved from elemental powders of Al, Mg and B that were pressed into green compacts and then hot-pressed in the temperature range $1200-1700\,^{\circ}\mathrm{C}$ (soak time 1 hour) at 20 MPa. Additionally some experiments were conducted at higher pressure. AlMgB $_{14}$ was formed at temperatures above $1200\,^{\circ}\mathrm{C}$. At $1700\,^{\circ}\mathrm{C}$ evaporation of Mg was observed, which resulted in the formation of detectable amounts of AlB $_{12}$. The decomposition of AlMgB $_{14}$ into γ -AlB $_{12}$ at temperatures above $1600\,^{\circ}\mathrm{C}$ is consistent with literature reports stating that AlMgB $_{14}$ decomposes into γ -AlB $_{12}$ at temperatures higher than $1550\,^{\circ}\mathrm{C}$ $^{8,\,17}$. At an applied pressure of 20 MPa

none of the materials could be densified, even at 1700 °C (Fig. 2). The higher density of the pre-reacted powder (PR) is primarily caused by the higher starting density and not caused by better densification behaviour.

Fig. 2: Dependence of the densification of the material E on the temperature at 20 MPa and 75 MPa pressure; additionally the data for the PR samples at 1200 and 1400 °C are given.

From the preliminary experiments, the optimum density for limited decomposition was found to be achieved at 1600 °C. Hence, subsequent samples were prepared at 1600 °C and 75 MPa.

 $AlMgB_{14} + Al$: In a second series of experiments the influence of an excess of Al on the densification of AlMgB₁₄ was tested. The results (Fig. 3) revealed that an excess of aluminium has no positive influence on the densification behaviour. The densification process with excess Al is independent of the use of the pre-reacted powder or the elemental powder. The densification of the elemental powder is slightly better than that observed for the pre-reacted powder.

The microstructures of the materials ES3Al and PRS3Al are shown in Fig. 4. The micrographs showed that the materials produced by densification of the elemental powders

have a pronounced texture. This was the case also for the other prepared samples (E and ES). A variation of the pressure application did not help. The inhomogeneous structure thus obtained was the reason that the composites were produced using the pre-reacted powder route in this work. It is possible that intensive high-energy milling, which results in at least partial formation of the borides during the milling, can prevent such texture in the materials.

The density of the composites (Table 3) was found to be in the range of 95-99% of the theoretical densities. The observed hardness $HV_{10} = 24.0 \pm 1.9$ GPa of the PRS material is in agreement with the HV_1 data observed for MgAlB₁₄ (26-28 GPa) ¹²⁻¹⁵.

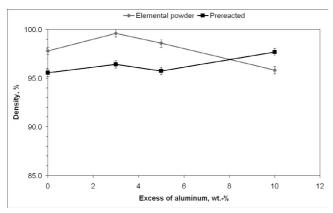


Fig. 3: Density of the materials prepared from the starting elemental powders and the pre-reacted powders at 1600 °C and 75 MPa as a function of the excess of aluminium in the composition (materials ES, ES3Al,ES5Al, ES10Al and PRS...PRS10 Al).

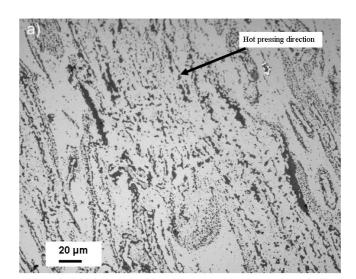

 $AlMgB_{14} + WC$: The small amounts of WC introduced either by milling or by actual WC addition react with the AlMgB₁₄ to form W₂B₄ (not W₂B₅ ²⁰). In PRS samples the formation of W₂B₄ was confirmed by EDX and XRD analysis. Additionally the carbon from the WC additive could be expected to form some boron carbide. However, the presence of the B₄C could not be confirmed either by XRD measurements or from SEM micrographs.

Table 3: Density, porosity, Vickers hardness and fracture toughness of the composites.

Composite	Density (gcm ⁻³)	HV ₁₀ (GPa)	K _{IC} (MPam ^{1/2})
PRS	3.05±0.01	24.0±1.9	4.7±1.0
PRS30 TiB ₂	3.41±0.01	29.5±1.7	3.8±0.6
PRS5 Si	3.02±0.01	31.2±1.5	4.3±1.1
PRS25.8TiC	3.43±0.01	32.1±2.7	3.5±0.8
PRS25.8TiC + B	3.19±0.01	30.9±2.3	3.8±0.8
PRS30WC	3.62±0.01	17.1±1.2	5.5±0.8
PRS46(TiB ₂ WC)	4.27±0.01	29.1±1.6	4.5±0.8
PRS46(WC TiB ₂)+B	3.93±0.01	33.8±1.4	5.0±0.8

 $AlMgB_{14} + TiB_2$: The data reveal TiB_2 is in equilibrium with $AlMgB_{14}$. Therefore in this material no change in the composition takes place. The WC introduced by milling

precipitates on the surface of the TiB₂ grains as W_2B_4 (Fig. 5). Both compounds – TiB₂ and W_2B_4 – have similar structures and epitaxial growth of the formed W_2B_4 on the TiB₂ can be expected. Also some mutual solubility of both compositions exists. In the TiB₂- W_2B_4 system the solubility range decreases to around 8–10 mol% WB_2 in TiB₂ at 1500 °C ²¹. The growth of WB_2 platelets can also be initiated by heterogeneous nucleation close to the grain boundaries of the (Ti,W)B₂ grains ^{22,23}. Such platelet-like growth of the W_2B_4 was also partially determined in the PRS+30WC sample.

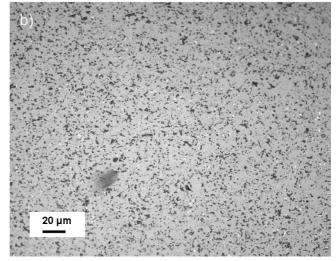


Fig. 4: Light microscope image of Material ES3AL (a) and PRS3Al densified at 1600 °C and 75 MPa (b).

AlMgB₁₄ + TiC: TiC is not in the equilibrium with MgAlB₁₄ and it can react with MgAlB₁₄ to form TiB₂ in the following reaction:

$$2\text{TiC} + \text{AlMgB}_{14} \rightarrow 2\text{TiB}_2 + (\text{Al,Mg})\text{B}_2 + 2\text{B}_4\text{C}$$

The formation of TiB₂ was observed with both XRD and SEM analysis. The presence of the (Al,Mg)B₂ phase was not clearly identified by XRD and neither was B₄C. The main peaks in the XRD pattern of the solid solution (Al,Mg)B₂ overlap with the other phases and would have only a low intensity. Therefore small amounts of the (Al,Mg)B₂ phase will not be detectable.

Additionally the carbon can partially react with the oxides to form CO. The peaks in the XRD pattern of the MgAl₂O₄ are slightly reduced, but do not disappear completely. Therefore the role of the carbon as an additive to AlMgB₁₄ is not completely clear. Sigl has mentioned the possibility of reduction of oxide scales in B₄C-TiB₂ composites by using carbon ²³. While the reduction of B₂O₃ is possible as a consequence of the reaction with carbon, the reduction of Al₂O₃ is not possible under the applied conditions (thermodynamic calculations using the FACT-SAGE program). Carbon can enhance only the evaporation of Al₂O₃ owing to increased Al₂O gas formation.

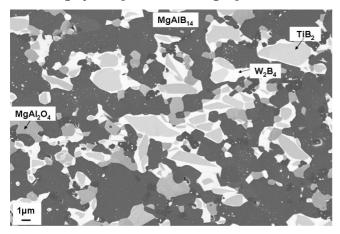


Fig. 5: SEM micrograph of the material PRS30TiB₂.

The addition of amorphous B will reduce the decomposition of AlMgB₁₄ caused by TiC:

$$TiC + 6B \rightarrow TiB_2 + B_4C$$

This addition does not result in visible changes in the phase composition and the microstructure of the material. TiB₂- and WB₂-rich solid solutions form in the material with the combined additives WC and TiB₂.

 $AlMgB_{14} + Si$: Addition of 5 wt% Si to $AlMgB_{14}$ yielded an increase in hardness. EDX measurements on the $AlMgB_{14}$ grains in the material PRS5Si reveal an incorporation of approximately 1 at% Si in the $AlMgB_{14}$. Another Si containing compound could not be detected with XRD analysis.

The hardness and the fracture toughness values of all the materials prepared in this study are given in Table 3. The data reveal that the addition of TiB₂, TiC, or TiB₂/WC increases the hardness in comparison to the PRS materials. The properties of the AlB₁₄/TiB₂ composites are in agreement with the previous data^{8, 12-14}. The addition of TiB₂ or TiC results in nearly the same values independently of any reaction taking place during sintering. The compensation of the B, which would be consumed by reaction with the carbide, does not result in significant changes in the mechanical properties.

The material with only WC addition shows the lowest hardness. This is probably caused by the slightly higher porosity (5%) and the lower intrinsic hardness of W₂B₄ that is formed in the reaction (26–27 GPa in comparison with 34 GPa for TiB₂ GPa ²⁴). Similar high hardness values (32 GPa) and fracture toughness values (4 – 5 MPam^{1/2}) were determined for the B₄C-TiB₂-WB₂ composite²³.

The increase in the fracture toughness of this material was attributed to the internal stresses generated by the different thermal expansion coefficients and enhanced crack deflection of the W₂B₄ platelets. A similar toughening mechanism can take place in the case of MgAlB₁₄-based composites. The differences in the thermal expansion coefficients are not as pronounced in the AlMgB₁₄-materials and therefore also the toughening mechanism is less pronounced. Additionally the (W,Ti)B₂ inclusions are under compression and not under tension as in the B₄C composite materials. This can explain the nearly constant fracture toughness values measured.

The reason for the pronounced change of the hardness on addition of small amounts of silicon is not completely clear. Beside the incorporation of Si into AlMgB₁₄ other mechanisms could be responsible for the behaviour. A similar effect of Si additions has been found for HIPed B₄C-TiB₂-W₂B₄ ²³. This effect needs further investigation using TEM.

IV. Conclusions

Different AlMgB₁₄ composite materials were prepared and their fracture toughness and hardness were measured. The densification was strongly dependent on the applied pressure. This has been found for other materials containing a high amount of boron. This makes the commercial use of these materials less attractive. The attempt to accelerate densification by the addition of some extra Al, which forms a liquid phase under sintering conditions, was not successful. The final density was nearly independent of the excess of aluminium added to the material.

The "pure" AlMgB $_{14}$ materials contained a small amount of MgAl $_2$ O $_4$ and a small amount of W $_2$ B $_4$. The MgAl $_2$ O $_4$ formation is caused by the oxidation of surface layers of the starting powders. The WB $_2$ is formed by reaction with the milling media, WC.

The 98-% dense, pure AlMgB₁₄ has a HV₁₀ hardness of 24 GPa. The addition of 30 wt% WC, which transforms during densification into W₂B₄, reduces the hardness of the material, but the addition of TiC increases the hardness. Therefore it can be expected that the hardness of the AlMgB₁₄ materials increases slightly if the WC content (approx. 5 – 8 wt%) can be reduced by more sophisticated processing procedures.

The composites made by addition of TiC, TiB₂ or TiB₂/WC to AlMgB₁₄ show a significant increase in hardness in comparison with the pure AlMgB₁₄. This could be caused by the change in the grain boundary chemistry and structure. Further, the intrinsic high hardness of TiB₂ and solid solutions of W₂B₄ with TiB₂ could also enhance the hardness.

It was found by EDX measurements that some Si incorporates into the lattice of AlMgB₁₄. This can be one reason for the increased hardness of the Si-doped materials.

Further detailed microstructural analysis of this promising group of wear-resistant materials is necessary to understand their mechanical properties.

References

- Werheit, H., Leithe-Jasper, A., Tanaka, T., Rotter, H.W., Schwetz, K.A.: Some properties of single-crystal boron carbide, J. Solid State Chem., 177, 575-579, (2004).
- He, D., Zhao, Y., Daemen, L., Qian, J., Shen, T.D., Zerda, T.W.: Boron suboxide: As hard as cubic boron nitride, Appl. Phys. Lett., 81, 643-645, (2002).
- Nieto-Sanz, D., Loubeyre, P., Crichton, W., Mezouar, M.: X-ray study of the synthesis of boron oxides at high pressure: Phase diagram and equation of state, *Phys. Rev. B*, 70, 214108, (2004).
- ⁴ Itoh, H., Maekawa, I., Iwahara, H.: High pressure sintering of B₆O powder and properties of the sintered compact, *J. Soc. Mat. Sci., Japan*, 47, 1000-1005, (1998).
- ⁵ Badzian, A.R.: Applied Physics Letters, **53**, 2495-2497, (1988).
- ⁶ Hebache, M.: The Search for Superhard Materials: Doped boron, EPL, 87, 16001, (2009).
- Higashi, I., Ito, T.: Refinement of the structure of magnesium aluminum boride (MgAlB₁₄), *J. Less Common Met.*, **92**, 239-46, (1983).
- ⁸ Cook, B.A., Harringa, J.L., Lewis, T.L., Russell, A.M.: A new class of ultra-hard materials based on AlMgB₁₄, *Scripta Mater.*, 42, 597-602, (2000).
- Okada, S., Shishido, T., Mori, T., Iizumi, K., Kudou, K., Nakajima, K.: Crystal growth of MgAlB₁₄-type compounds using metal salts and some properties, *J. Alloy Compd.*, 458, 297-301, (2008).
- Lowther, J.E.: Possible ultra-hard materials based upon boron icosahedra, *Physica B, Condensed Matter*, 322, 173-178, (2002).
- Kölpin, H., Music, D., Henkelman, G., Schneider, J.M.: Phase stability and elastic properties of XMgB₁₄ studied by *ab initio* calculations (X=Al,Ge,Si,C,Mg,Sc,Ti,V,Zr,Nb,Ta,Hf), *Physical Review B*, 78, 054122, (2008).
- ¹² Kevorkijan, V., Skapin, S.D., Jelen, M., Krnel, K., Meden, A.: Cost-effective synthesis of AlMgB₁₄-xTiB₂, *J. Eur. Cer. Soc.*, 27, 493-497, (2007).
- Ahmeda, A., Bahadura, S., Cook, B.A., Peters, J.: Mechanical properties and scratch test studies of new ultra-hard AlMgB₁₄ modified by TiB₂, *Tribol. Int.*, 39, 129-137, (2006).

- Ahmeda, A., Bahadur, S., Russell, A.M., Cook, B.A.: Belt abrasion resistance and cutting tool studies on ultra-hard boride materials, *Tribol. Int.*, 42, 706-713, (2009).
- Roberts, D.J., Zhao, J., Munir, Z.A.: Mechanism of reactive sintering of MgAlB₁₄ by pulse electric current, *Int. J. Refract. Met. H.*, 27, 556-563, (2009).
- Bodkin, R., Herrmann, M., Coville, N.J., Sigalas, I.: A study of the Al-MgB ternary phase diagram, *Int. J. Mat. Res.* (formerly Z. Metallkd.), 100, 105-109, (2009).
- Lewis, T.L., Cook, B.A., Harringa, J.L., Russell, A.M.: Al₂MgO₄, Fe₃O₄ and FeB impurities in AlMgB₁₄, *Mat. Sci. and Eng. A*, **351**, 117, (2003).
- Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements, *J. Amer. Ceram. Soc.*, 64, 533-8, (1981).
- Yongbin, L., Harmon, B.N.: First principles calculation of elastic properties of AlMgB₁₄, J. Alloy. Compd., 338, 242-247, (2002).
- Frotscher, M., Klein, W., Bauer, J., Fang, C.M., Halet, J.F., Senyshyn, A., Baehtz, C., Albert, B.: A Reinvestigation of the Mo/B and W/B System, Z. Anorg. Allg. Chem., 633, 2626, (2007).
- ²¹ Telle, R., Fendler, E., Petzow, G.: The quasi-binary systems CrB₂-TiB₂, CrB₂-WB₂, TiB₂-WB₂, *J. Hard. Mat.*, **3**, 211-224, (1992)
- Mitra, I., Telle, R.: Phase formation during annual of supersaturated TiB₂-CrB₂-WB₂ solid solutions, *J. Solid State Chem.*, 133, 25, (1997).
- ²³ Telle, R., Sigl, L.S., Takagi, K.: Boride-based Hard Materials, R. Riedel, Handbook of Ceramic Hard Materials, Wiley-VCH, 802-933, (2000).
- ²⁴ Riedel, R.: Handbook of Ceramic Hard Materials, Wiley-VCH, 968, (2000).
- Quinn, G., Bradt, R.: On the Vickers Indentation Fracture Toughness Test, J. Am. Ceram. Soc., 90, 673, (2007)