Articles
All articles | Recent articles
Synthesis, Characterization, and Compositional Impact on the Thermal and Mechanical Properties of High-Entropy Carbides via High-Energy Ball Milling and Spark Plasma Sintering
H. Kim
Korea Institute of Industrial Technology, 156, Gaetbeol-ro, Yeonsu-gu, Incheon, Republic of Korea
received September 12, 2024, received in revised form April 7, 2025, accepted April 11, 2025
Vol. 16, No. 2, Pages 69-76 DOI: 10.4416/JCST2024-00018
Abstract
High-entropy carbides (HECs) hold promise for high-temperature applications due to their potentially low thermal conductivity and strong mechanical properties. This study examines how compositional variations affect the thermal and mechanical properties of three HEC compositions: (Hf-Ta-Ti-Zr-Nb)C, (Ta-Ti-Nb-V-W)C, and (Hf-Ta-Ti-Nb-W)C. Synthesized via high-energy ball milling and spark plasma sintering, Composition A, characterized by its stable single-phase structure, exhibited the highest Vickers hardness (∼ 1 970 HV), fracture toughness (∼ 5.8 MPa·m1/2), and thermal conductivity (∼ 13 W/m·K) at room temperature. In contrast, Compositions B and C, which formed secondary phases, showed reduced mechanical properties and thermal conductivity. These results highlight the need for precise compositional control and processing optimization to enhance HEC performance in high-temperature environments.
Download Full Article (PDF)
Keywords
High-entropy carbides, thermal conductivity, mechanical properties, high-energy ball milling, spark plasma sintering.
References
1 Shao, Z., Zhang, Y., Li, S., et al.: High entropy ultrahigh temperature ceramic insulator: A new material for hypersonic applications, Acta Mater., 202, 116 – 125, (2020).
2 Milich, M., Quiambao-Tomko, K., Tomko, J., et al.: Ablation threshold and temperature dependent thermal conductivity of high entropy carbide thin films, arXiv:2212.01238 [physics.app-ph], (2022).
3 Wang, Z., Li, Z.T., Zhao, S.J., Wu, Z.G.: High-entropy carbide ceramics: A perspective review, Tungsten, 3, [2], 131 – 142, (2021).
4 , Dennett, C.A., Hua, Z., Lang, E., Wang, F., Cui, B.: Thermal conductivity reduction in (Zr0.25Ta0.25Nb0.25Ti0.25)C high entropy carbide from extrinsic lattice defects, Mater. Res. Lett., 10, [9], 611 – 617, (2022).
5 Yeh, J.W., et al.: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, [5], 299 – 303, (2004).
6 Cantor, B., Chang, I.T.H., Knight, P., Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375 – 377, 213 – 218, (2004).
7 Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., Liaw, P.K.: Refractory high-entropy alloys, Intermetallics, 18, [9], 1758 – 1765, (2010).
8 Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10, [6], 534 – 538, (2008).
9 Tsai, M.H., Yeh, J.W.: High-entropy Alloys: A critical review, Mater. Res. Lett., 2, [3], 107 – 123, (2014). doi: 10.1080/21663831.2014.912690
10 Gild, J., Zhang, Y., Harrington, T., et al.: High-entropy metal Carbides: discovering a new class of materials, Sci. Rep., 6, 37946, (2016). doi: 10.1038/srep37946
11 Yan, X., Constantin, L., Lu, Y., et al.: (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity, J. Am. Ceram. Soc., 101, [10], 4486 – 4491, (2018). doi: 10.1111/jace.15770
12 Li, J., Zhou, J., Zhang, Y., Li, Y.: Characteristics and sintering behavior of (Hf-Ta-Ti-Zr-Nb)C high-entropy carbides fabricated by high-energy ball milling and spark plasma sintering, Int. J. Appl. Ceram. Technol., 18, [1], 1 – 13, (2021).
13 Song, J., Duong, L.V., Trinh, Ph.V., Linh, N.N., Phuong, D.D., Seok, J., Kim, S.-Y., Han, J., Kim, H.: Characteristics and sintering behavior of (Hf-Ta-Ti-Zr-Nb)C high-entropy carbides fabricated by high-energy ball milling and spark plasma sintering, J. Ceram. Sci. Technol., 14, [1], 17 – 24, (2022). doi: 10.4416/JCST2022 – 00008
14 Liu, J., Xiong, J., Guo, Z., Zhou, H., Yang, T.E., Yang, L., Zhao, W.: Preparation of high-entropy (Zr0.25Hf0.25Ta0.25Ti0.25)C-Ni-Co composite by spark plasma sintering, Metall. Mater. Trans. A, 51, 6706 – 6713, (2020).
15 Song, J., Seok, J., Kim, S.-Y., Han, J., Kim, H.: Enhancing the mechanical properties of (Hf-Ta-Ti-Zr-Nb)C high-entropy carbides using a multi-step spark plasma sintering process, J. Ceram. Sci. Technol., 14, [2], 81 – 88, (2023). doi: 10.4416/JCST2023 – 00008
16 Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc., 64, [9], 533 – 538, (1981).
17 Moskovskikh, D.O., Vorotilo, S., Sedegov, A.S., Kuskov, K.V., Bardasova, K.V., Kiryukhantsev-Korneev, P.V., Zhukovskyi, M., Mukasyan, A.S.: High-entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering, Ceram. Int., 46, [11], 19008 – 19014, (2020).
18 Dudina, D.V., Bokhonov, B.B.: Preparation of high-entropy carbides by different sintering techniques, J. Eur. Ceram. Soc., 41, [3], 1339 – 1348, (2021).
19 Harrington, T.J., Gild, J., Sarker, P., Toher, C., Rost, C.M., Dippo, O.F., McElfresh, C., Kaufmann, K., Marin, E., Borowski, L., Hopkins, P.E., Luo, J., Curtarolo, S., Brenner, D.W., Vecchio, K.S.: Phase stability and mechanical properties of novel high entropy transition metal carbides, Acta Mater., 166, 271 – 280, (2019).
20 Wang, F., Zhang, X., Yan, X., Lu, Y., Nastasi, M., Chen, Y., Cui, B.: The effect of submicron grain size on thermal stability and mechanical properties of high-entropy carbide ceramics, J. Am. Ceram. Soc., 103, [8], 4463 – 4472, (2020).
21 Pötschke, J., Dahal, M., Vornberger, A., Herrmann, M., Michaelis, A.: Production and properties of high entropy carbide based hardmetals, Metals, 11, [2], 271, (2021).
22 Wang, F., Zhang, X., Yan, X., Lu, Y., Nastasi, M., Chen, Y., Cui, B.: The effect of submicron grain size on thermal stability and mechanical properties of high-entropy carbide ceramics, J. Am. Ceram. Soc., 103, [8], 4463 – 4472, (2020).
23 Yan, X., Constantin, L., Lu, Y., Silvain, J.F., Nastasi, M., Cui, B.: (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity, J. Am. Ceram. Soc., 101, [10], 4486 – 4491, (2018).
Copyright
Göller Verlag GmbH


