• Home
  • Contact
  • Login
  • Privacy
  • Imprint

Search

Journal of Ceramic Science and Technology

The Journal of Ceramic Science and Technology publishes original scientific articles on all topics of ceramic science and technology from all ceramic branches. The focus is on the scientific exploration of  the relationships between processing, microstructure and properties of sintered ceramic materials as well as on new processing routes for innovative ceramic materials. The papers may have either theoretical or experimental background. A high quality of publications will be guaranteed by a thorough double blind peer review process.

The Journal is published by Göller Verlag GmbH on behalf of the Deutsche Keramische Gesellschaft (DKG). Edited by Yu-Ping Zeng, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China.

  • Home
  • Early view
  • Articles
    • All articles
    • Recent Articles
    • Early Views
  • Issues
  • Submit an article
  • Guidelines for Referees
  • Guidelines for Authors
  • Open Access
  • Editorial Board
  • Copyright
  • Contact
  • Order journal / article
  • Customer area
  • Terms of Service

Journal Metrics

Web of science
Impact Factor: 1,220
Impact Factor without Journal Self Cites: 1,060
5 Year Impact Factor: 0,818

Scopus
Scimago Journal Rank (SJR):  0,378

 

Prices

Authors
1,300 € Open Access

Print Subscription
62 € per year

view all subscriptions

 

Payment methods

 Credit card

 Invoice

 Wire transfer

 

Articles

All articles  |  Recent articles

Synthesis, Characterization, and Compositional Impact on the Thermal and Mechanical Properties of High-Entropy Carbides via High-Energy Ball Milling and Spark Plasma Sintering

H. Kim

Korea Institute of Industrial Technology, 156, Gaetbeol-ro, Yeonsu-gu, Incheon, Republic of Korea

received September 12, 2024, received in revised form April 7, 2025, accepted April 11, 2025

Vol. 16, No. 2, Pages 69-76   DOI: 10.4416/JCST2024-00018

Abstract

High-entropy carbides (HECs) hold promise for high-temperature applications due to their potentially low thermal conductivity and strong mechanical properties. This study examines how compositional variations affect the thermal and mechanical properties of three HEC compositions: (Hf-Ta-Ti-Zr-Nb)C, (Ta-Ti-Nb-V-W)C, and (Hf-Ta-Ti-Nb-W)C. Synthesized via high-energy ball milling and spark plasma sintering, Composition A, characterized by its stable single-phase structure, exhibited the highest Vickers hardness (∼ 1 970 HV), fracture toughness (∼ 5.8 MPa·m1/2), and thermal conductivity (∼ 13 W/m·K) at room temperature. In contrast, Compositions B and C, which formed secondary phases, showed reduced mechanical properties and thermal conductivity. These results highlight the need for precise compositional control and processing optimization to enhance HEC performance in high-temperature environments.

Download Full Article (PDF)

Keywords

High-entropy carbides, thermal conductivity, mechanical properties, high-energy ball milling, spark plasma sintering.

References

1 Shao, Z., Zhang, Y., Li, S., et al.: High entropy ultrahigh temperature ceramic insulator: A new material for hypersonic applications, Acta Mater., 202, 116 – 125, (2020).

2 Milich, M., Quiambao-Tomko, K., Tomko, J., et al.: Ablation threshold and temperature dependent thermal conductivity of high entropy carbide thin films, arXiv:2212.01238 [physics.app-ph], (2022).

3 Wang, Z., Li, Z.T., Zhao, S.J., Wu, Z.G.: High-entropy carbide ceramics: A perspective review, Tungsten, 3, [2], 131 – 142, (2021).

4 , Dennett, C.A., Hua, Z., Lang, E., Wang, F., Cui, B.: Thermal conductivity reduction in (Zr0.25Ta0.25Nb0.25Ti0.25)C high entropy carbide from extrinsic lattice defects, Mater. Res. Lett., 10, [9], 611 – 617, (2022).

5 Yeh, J.W., et al.: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, [5], 299 – 303, (2004).

6 Cantor, B., Chang, I.T.H., Knight, P., Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375 – 377, 213 – 218, (2004).

7 Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., Liaw, P.K.: Refractory high-entropy alloys, Intermetallics, 18, [9], 1758 – 1765, (2010).

8 Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10, [6], 534 – 538, (2008).

9 Tsai, M.H., Yeh, J.W.: High-entropy Alloys: A critical review, Mater. Res. Lett., 2, [3], 107 – 123, (2014). doi: 10.1080/21663831.2014.912690

10 Gild, J., Zhang, Y., Harrington, T., et al.: High-entropy metal Carbides: discovering a new class of materials, Sci. Rep., 6, 37946, (2016). doi: 10.1038/srep37946

11 Yan, X., Constantin, L., Lu, Y., et al.: (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity, J. Am. Ceram. Soc., 101, [10], 4486 – 4491, (2018). doi: 10.1111/jace.15770

12 Li, J., Zhou, J., Zhang, Y., Li, Y.: Characteristics and sintering behavior of (Hf-Ta-Ti-Zr-Nb)C high-entropy carbides fabricated by high-energy ball milling and spark plasma sintering, Int. J. Appl. Ceram. Technol., 18, [1], 1 – 13, (2021).

13 Song, J., Duong, L.V., Trinh, Ph.V., Linh, N.N., Phuong, D.D., Seok, J., Kim, S.-Y., Han, J., Kim, H.: Characteristics and sintering behavior of (Hf-Ta-Ti-Zr-Nb)C high-entropy carbides fabricated by high-energy ball milling and spark plasma sintering, J. Ceram. Sci. Technol., 14, [1], 17 – 24, (2022). doi: 10.4416/JCST2022 – 00008

14 Liu, J., Xiong, J., Guo, Z., Zhou, H., Yang, T.E., Yang, L., Zhao, W.: Preparation of high-entropy (Zr0.25Hf0.25Ta0.25Ti0.25)C-Ni-Co composite by spark plasma sintering, Metall. Mater. Trans. A, 51, 6706 – 6713, (2020).

15 Song, J., Seok, J., Kim, S.-Y., Han, J., Kim, H.: Enhancing the mechanical properties of (Hf-Ta-Ti-Zr-Nb)C high-entropy carbides using a multi-step spark plasma sintering process, J. Ceram. Sci. Technol., 14, [2], 81 – 88, (2023). doi: 10.4416/JCST2023 – 00008

16 Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc., 64, [9], 533 – 538, (1981).

17 Moskovskikh, D.O., Vorotilo, S., Sedegov, A.S., Kuskov, K.V., Bardasova, K.V., Kiryukhantsev-Korneev, P.V., Zhukovskyi, M., Mukasyan, A.S.: High-entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering, Ceram. Int., 46, [11], 19008 – 19014, (2020).

18 Dudina, D.V., Bokhonov, B.B.: Preparation of high-entropy carbides by different sintering techniques, J. Eur. Ceram. Soc., 41, [3], 1339 – 1348, (2021).

19 Harrington, T.J., Gild, J., Sarker, P., Toher, C., Rost, C.M., Dippo, O.F., McElfresh, C., Kaufmann, K., Marin, E., Borowski, L., Hopkins, P.E., Luo, J., Curtarolo, S., Brenner, D.W., Vecchio, K.S.: Phase stability and mechanical properties of novel high entropy transition metal carbides, Acta Mater., 166, 271 – 280, (2019).

20 Wang, F., Zhang, X., Yan, X., Lu, Y., Nastasi, M., Chen, Y., Cui, B.: The effect of submicron grain size on thermal stability and mechanical properties of high-entropy carbide ceramics, J. Am. Ceram. Soc., 103, [8], 4463 – 4472, (2020).

21 Pötschke, J., Dahal, M., Vornberger, A., Herrmann, M., Michaelis, A.: Production and properties of high entropy carbide based hardmetals, Metals, 11, [2], 271, (2021).

22 Wang, F., Zhang, X., Yan, X., Lu, Y., Nastasi, M., Chen, Y., Cui, B.: The effect of submicron grain size on thermal stability and mechanical properties of high-entropy carbide ceramics, J. Am. Ceram. Soc., 103, [8], 4463 – 4472, (2020).

23 Yan, X., Constantin, L., Lu, Y., Silvain, J.F., Nastasi, M., Cui, B.: (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity, J. Am. Ceram. Soc., 101, [10], 4486 – 4491, (2018).

Copyright

Göller Verlag GmbH

Special and Topcial Issues

Special Issue, 3/2025
Guest Editors:
Olaf Krause and Christian Dannert
Advances in Refractories

Topical Issue, 3/2017
Guest Editors:
Waltraud M. Kriven and Gregor J. G. Gluth
Geopolymers

Special Issue, 1/2017
Guest Editor:
Alexander Michaelis
6th International Congress on Ceramics (ICC6)

Topical Issue, 2/2016
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advan-ced steel technologies; A challenge for refractory materials and systems.

Topcial Issue, 4/2015
Low Temperature Co-fired Ceramics - LTCC

Topcial Issue, 2/2015
Status of Additive Manufacturing with Ceramics

Topical Focus, 4/2014
Materials Processing Science with Lasers as Energy Sources

Topical Issue, 2/2014
Guest Editor:
Christos Aneziris
Low carbon and carbon-free refractory approaches for advanced steel technologies; A challenge for refractory materials and systems.

Special Issue, 2/2013
Guest Editor:
Alexander Michaelis
Ceramic Materials and Components for Energy and Environmental Applications

Topical Issue, 1/2013
Ceramic Processing Science with Lasers as Energy Sources

Printed version

jcst 2015 02 cover

Order journal subscription
 

© 2009-2025 Göller Verlag GmbH