Articles
All articles | Recent articles
Influence of Modified Solid-State Reaction Method on Sintering and Dielectric Properties of (Na0.5Bi0.5)WO4 Ceramic
Xiaofeng Yuan1,2, Yixuan Wei3, Hongliang Liu1, Yumeng Zhang1, Wenxia Li1, Aobo Fan1
1 School of Materials Science and Engineering, Anyang Institute of Technology, Anyang 455000, China
2 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
3 School of Foreign Languages, Anyang Institute of Technology, Anyang 455000, China
received June 11, 2024, received in revised form December 24, 2024, accepted January 01, 2025
Vol. 16, No. 1, Pages 21-28 DOI: 10.4416/JCST2024-00012
Abstract
In this work, (Na0.5Bi0.5)WO4 ceramic was prepared with the modified solid-state reaction method. The ceramic samples were calcined at 550 °C and then sintered at 680 °C for 4 h. After the ceramic samples had been thermally etched, their dense microstructure and straight grain boundary were observed by means of scanning electron microscopy, and a relative density of 95.1 % determined. The dielectric property of the (Na0.5Bi0.5)WO4 ceramic in this work was measured with a Q × f value of 28 000 GHz, a relative permittivity of 27.5 and a temperature coefficient of - 15 ppm/K. Compared with the measured result for the (Na0.5Bi0.5)WO4 ceramic prepared with the traditional solid-state reaction method, the sintering temperature dropped from 720 °C to 680 °C and the Q × f value increased by 57 % from 17 500 GHz to 28 000 GHz. Ethanol and isostatic pressing technology can replace the polyvinyl ethanol and traditional press effectively and the modified solid-state reaction method is an excellent way to improve the sintering and dielectric properties of ceramic material.
Download Full Article (PDF)
Keywords
LTCC, modified solid-state reaction method, microwave dielectric ceramic
References
1 Sebastian, M.T., Jantunen, H.: Low loss dielectric materials for LTCC applications: a review, Int. Mater. Rev., 53, 57 – 90, (2008).
2 Xia, X., Dai, Y., Sun, S.: The effects of MoO3 addition on microwave dielectric properties of Bi6B10O24 ceramics for ULTCC applications, J. Mater. Sci.: Mater. Electron., 35, 624, (2024).
3 Zang, M.Y., Zheng, M.P., Zhu, M.K.: Low-temperature sintering and microwave dielectric properties of CaMoO4 ceramics for LTCC and ULTCC applications, J. Eur. Ceram. Soc., 44, 293 – 301, (2024).
4 Sebastian, M.T., Wang, H., Jantunen, H.: Low temperature co-fired ceramics with ultra-low sintering temperature: A review, Curr. Opin. Solid State Mater. Sci., 20, 151 – 170, (2016).
5 Sebastian, M.T., Ubic, R., Jantunen, H.: Low-loss dielectric ceramic materials and their properties, Int. Mater. Rev., 60, 392 – 412, (2015).
6 Guo, W.J., Ma, Z.Y., Lu, Y.T.: High-Q, temperature-stable, and medium-permittivity composite ceramics of tungstenbronze-type and perovskite titanates through layer-stacking process, J. Eur. Ceram. Soc., 44, 2157 – 2163, (2024).
7 Huang, Z.P., Qiao, J.L., Li, L.X.: Microwave dielectric ceramics with low dielectric loss and high temperature stability for LTCC applications, Ceram. Int., 50, 9029 – 9033, (2024).
8 Que, T., Lu, Y., Shan, Y.T.: Effects of CaO additive on sintering behaviour and properties of CaO-B2O3-SiO2 glass-ceramics for LTCC applications, Ceram. Int., 50, 6091 – 6098, (2024).
9 Wang, Z.X., Guo, Y.F., Li, J.M.: A novel oxyfluoride ceramic in Li2TiO3-LiF system for LTCC applications, Ceram. Int., 49, 33425 – 33431, (2023).
10 Huang, Y.C., Liu, C., Zhang, D.N.: Sintering behavior and microwave dielectric properties of LMZBS glass doped Li3Mg4NbO8 ceramics for LTCC applications, J. Mater. Sci.: Mater. Electron., 34, 2247, (2023).
11 Ojima, K., Iwasaki, K., Harada, S.: Low-temperature sintering mechanism and electrical properties of CuO-added (Bi0. 5Na0. 5) TiO3 ceramics, J. Ceram. Soc. Jpn, 131, 209 – 215, (2023).
12 Takagi, Y., Ochiai, Y., Kawagoe, T.: Oxygen tracer diffusion analysis and observation of domain structure in quenched (Bi0. 5Na0. 5) TiO3 ceramics, Jpn. J. Appl. Phys., 61, SN1034, (2022).
13 Zhang, F., Qiao, X., Shi, Q.: High energy storage density realized in Bi0. 5Na0. 5TiO3-based relaxor ferroelectric ceramics at ultralow sintering temperature, J. Eur. Ceram. Soc., 41, 368 – 375, (2021).
14 Yuan, X.F., Zhang, G.Q., Wang, H.: A novel solid solution (K1-xNax)2Mo2O7 (0.0≤ x≤ 0.3) ceramics with ultra-low sintering temperatures, J. Eur. Ceram. Soc., 38, 4967 – 4971, (2018).
15 Tayama, T., Takagi, Y., Nagata, H.: High-power piezoelectric properties of quenched (Bi0. 5Na0. 5) TiO3-based solid-solution ceramics, J. Appl. Phys., 132, 064101, (2022).
16 Hayashi, K., Tricot, G., Saitoh, A.: Colorless Bi2O3-containing borophosphate glasses with high refractivity, J. Ceram. Soc. Jpn., 131, 889 – 893, (2023).
17 Nagata, H., Takagi, Y., Yoneda, Y.: Correlation between depolarization temperature and lattice distortion in quenched (Bi1/2Na1/2) TiO3-based ceramics, Appl. Phys. Express, 13, 061002 (2020).
18 Takagi, Y., Nagata, H., Takenaka, T.: Effects of quenching on bending strength and piezoelectric properties of (Bi0.5Na0.5)TiO3 ceramics, J. Asian Ceram. Soc., 8, 277 – 283, (2020).
19 Yuan, X.F., Xue, X., Wang, H.: Preparation of ultra-low temperature sintering ceramics with ultralow dielectric loss in Na2O-WO3 binary system, J. Am. Ceram. Soc., 102, 4014 – 4020, (2019).
20 Hanuza, J, et al.: Structure and vibrational dynamics of tetragonal NaBi (WO4)2 scheelite crystal, Vib. Spectr., 12, 25 – 36, (1996).
21 Klevtsov, P.V., Vinokurov, V.A., Klevtsova, R.F.: Double molybdates and tungstates of alkali metals with bismuth, M+Bi(TO4)2, Kristallogr., 18, 1192 – 1197, (1973).
22 Ma, C.: The novel phase transition of NaBi (WO4)2 under high pressure, J. Solid State Chem., 200, 246 – 250, (2013).
23 Pang, L.X., Zhou, D., Qi, Z.M.: Influence of W substitution on crystal structure, phase evolution and microwave dielectric properties of (Na0.5Bi0.5)MoO4 ceramics with low sintering temperature, Sci. Rep., 7, 3201, (2017).
24 Chen, X.M., Li, Y.: A-and B site cosubstituted Ba6 – 3xSm8+2xTi18O54 microwave dielectric ceramics, J. Am. Ceram. Soc., 85, 579 – 584, (2002).
25 Omata, T., Sharma, A., Kinoshita, T.: Investigating the role of GeO2 in enhancing the thermal stability and proton mobility of proton-conducting phosphate glasses, J. Mater. Chem. A., 9, 20595 – 20606, (2021).
26 Omata, T., Yamaguchi, T., Tsukuda, S., Ishiyama, T., Nishii, J., Yamashita, T. and Kawazoe, H.: Phys. Chem. Chem. Phys., 21, 10744 – 10749, (2019).
27 Okura, T., Kawada, K., Yoshida, N.: Proton transport properties of proton-conducting phosphate glasses at their glass transition temperatures, Solid State Ionics, 225, 367 – 370, (2012).
28 Sebastian, M.T.: Dielectric materials for wireless communication, Elsevier (2008) pp. 34 – 43.
29 Zhou, D., Randall, C.A., Wang, H.: Microwave dielectric ceramics in Li2O-Bi2O3-MoO3 system with ultra-low sintering temperatures, J. Am. Chem. Soc., 93, 2147 – 2150, (2010).
30 Zhou, D., Randall, C.A., Wang, H.: Microwave dielectric properties trends in a solid solution (Bi1-xLnx)2Mo2O9 (Ln=La, nd, 0.0≤x≤0.2) system, J. Am. Ceram. Soc., 92, 2931 – 2936, (2018).
31 Li, X., Bianchini, F., Wind, J.: Microstructural effects on sodium ion conduction properties of grains and grain boundaries of Na5YSi4O12-type silicophosphate glass-ceramics, ACS Appl. Mater. Inter., 12, 28188 – 28198, (2020).
32 Yamauchi, H., Ikejiri, J., Sato, F.: Pressureless all-solid-state sodium-ion battery consisting of sodium iron pyrophosphate glass-ceramic cathode and β″-alumina solid electrolyte composite, J. Am. Ceram. Soc., 102, 6658 – 6667, (2019).
33 Mendelson, M.I.: Average grain size in polycrystalline ceramics, J. Am. Chem. Soc., 52, 443 – 446, (1969).
34 Frohlichs, H.: Theory of dielectrics, Clarendon, (1950).
35 Yoon, S.H., Kim, D.W., Cho, S.Y.: Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds, J. Eur. Ceram. Soc., 26, 2051 – 2054, (2006).
36 Ubic, R., Reaney, I.M., Lee, W.E.: Microwave dielectric solid-solution phase in system BaO-Ln2O3-TiO2 (Ln = lanthanide cation), Int. Mater. Rev., 43, 205 – 219, (1998).
37 Chaim, R., Levin, M., Shlayer, A.: Sintering and densification of nanocrystalline ceramic oxide powders: a review, Adv. Appl. Ceram., 107, 159 – 169, (2008).
38 Shannon, R.D.: Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys., 73, 348 – 366, (1993).
39 Shannon, R.D., Oswald, R.A., Parise, J.B.: Dielectric constants and crystal structures of CaYAlO4, CaNdAlO4, and SrLaAlO4, and deviations from the oxide additivity rule, J. Solid State Chem., 98, 90 – 98, (1992).
40 Valant, M., Suvorov, D.: Chemical compatibility between silver electrodes and low-firing binary-oxide compounds: conceptual study, J. Am. Ceram. Soc., 83, 2721 – 2729, (2000).
41 Wee, S.H., Kim, D.W., Yoo, S.I.: Microwave dielectric properties of low-fired ZnNb2O6 ceramics with BiVO4 addition, J. Am. Ceram. Soc., 87, 871 – 874, (2004).
Copyright
Göller Verlag GmbH