Articles
All articles | Recent articles
Advancements in the Application of Far-Infrared Ceramics for Sports Injury Rehabilitation
H. Zhang
Huanghe Science & Technology University, Zhengzhou, Henan, China
received October 15, 2024, received in revised form November 6, 2024, accepted November 9, 2024
Vol. 16, No. 1, Pages 1-10 DOI: 10.4416/JCST2024-00024
Abstract
This review examines the emerging applications of far-infrared (FIR)-emitting ceramic materials in sports injury rehabilitation. FIR ceramics, engineered to efficiently absorb and emit radiation in the 3 – 1 000 μm wavelength range, have shown promise in accelerating recovery processes and enhancing athletic performance. The unique properties of these materials allow for deep tissue penetration, potentially offering more profound therapeutic effects compared to conventional heat therapies. This paper explores the composition and mechanisms of FIR-emitting ceramics, including their thermal and non-thermal biological effects. Applications in muscle recovery, wound healing, and inflammation management are discussed, with a focus on recent clinical and experimental findings. The review highlights the potential of FIR ceramics in reducing delayed onset muscle soreness, promoting tissue repair, and modulating inflammatory responses. Emerging technologies, such as FIR-emitting garments and therapeutic devices, are evaluated for their efficacy in sports medicine contexts. While the field shows promise, challenges in standardization and the need for more extensive clinical trials are addressed. Future research directions, including the optimization of ceramic compositions and integration with other rehabilitation modalities, are outlined. As the understanding of FIR therapy advances, its role in comprehensive sports injury rehabilitation and performance enhancement strategies is likely to expand, offering new avenues for athlete recovery and injury prevention.
Download Full Article (PDF)
Keywords
Electromagnetic therapy, tissue regeneration, athletic performance, bioceramic materials, thermal physiotherapy
References
1 Fonseca, S.T., Souza, T.R., Verhagen, E., van Emmerik, R., Bittencourt, N.F.N., Mendonça, L.D.M., Andrade, A.G.P., Resende, R.A., Ocarino, J.M.: Sports injury forecasting and Complexity: A synergetic approach, Sports Med., 50, 1757 – 1770, (2020). doi: https://doi.org/10.1007/s40279-020-01326-4
2 Tee, J.C., McLaren, S.J., Jones, B.: Sports injury prevention is Complex: we need to invest in better processes, not singular solutions, Sports Med., 50, 689 – 702, (2020). doi: https://doi.org/10.1007/s40279-019-01232-4
3 Van Eetvelde, H., Mendonça, L.D., Ley, C., Seil, R., Tischer, T.: Machine learning methods in sport injury prediction and prevention: a systematic review, J. Exp. Orthop., 8, 27, (2021). doi: https://doi.org/10.1186/s40634-021-00346-x
4 Wen, J., Pan, J., Ma, J., Ge, X., Xu, Z., Wang, X., Lv, Z.: Advances in far-infrared research: therapeutic mechanisms of disease and application in cancer detection, Lasers Med. Sci., 39, 41, (2024). doi: https://doi.org/10.1007/s10103-024-03994-4
5 Lin, L.-C., Lin, Y.-Y.: The biological effectiveness and medical significance of far infrared radiation (FIR), Malays. J. Med. Biol. Res., 8, 41 – 46, (2021). doi: https://doi.org/10.18034/mjmbr.v8i1.564
6 Lin, Y.-W., Tsai, C.-S., Huang, C.-Y., Tsai, Y.-T., Shih, C.-M., Lin, S.-J., Li, C.-Y., Lin, C.-Y., Sung, S.-Y., Lin, F.-Y.: Far-infrared therapy decreases orthotopic allograft transplantation vasculopathy, Biomedicines, 10, 1089, (2022). doi: https://doi.org/10.3390/biomedicines10051089
7 Chen, R.-F., Liu, K.-F., Lee, S.-S., Huang, S.-H., Wu, Y.-C., Lin, Y.-N., Wang, C.-T., Kuo, Y.-R.: Far-infrared therapy accelerates diabetic wound healing via recruitment of tissue angiogenesis in a full-thickness wound healing model in rats, Biomedicines, 9, 1922, (2021). doi: https://doi.org/10.3390/biomedicines9121922
8 Lindhard, K., Rix, M., Heaf, J.G., Hansen, H.P., Pedersen, B.L., Jensen, B.L., Hansen, D.: Effect of far infrared therapy on arteriovenous fistula maturation, survival and stenosis in hemodialysis patients, a randomized, controlled clinical trial: the FAITH on fistula trial, BMC Nephrol., 22, 283, (2021). doi: https://doi.org/10.1186/s12882-021-02476-x
9 Chang, Y., Chang, J.-T., Lee, M.-Y., Huang, M.-Z., Chao, Y.-F.C.C., Shih, Y.-L., Hwang, Y.-R.: Does Far-Infrared Therapy Improve Peritoneal Function and Reduce Recurrent Peritonitis in Peritoneal Dialysis Patients? J. Clin. Med., 11, 1624, (2022). doi: https://doi.org/10.3390/jcm11061624
10 Lee, M., Choi, S.J.: Far-infrared therapy for hemodialysis patients, J. Korean Dial. Access., 6, 47 – 51, (2023). doi: https://doi.org/10.56774/jkda23013
11 Pastore, D., Pacifici, F., Ciao, G., Bedin, V., Pasquantonio, G., Della-Morte, D.: Far infrared technology (FIT) therapy patches, protects from inflammation, oxidative stress and promotes cellular vitality, Curr. Pharm. Des., 26, 4323 – 4329, (2020). doi: https://doi.org/10.2174/1381612826666200427112023
12 Kalfagiannis, N., Stoner, J.L., Hillier, J., Vangelidis, I., Lidorikis, E.: Mid- to far-infrared sensing: SrTiO3, a novel optical material, J. Mater. Chem. C., 7, 7851 – 7857, (2019). doi: https://doi.org/10.1039/C9TC01753D
13 Han, Y., Ling, S., Qi, Z., Shao, Z., Chen, X.: Application of far-infrared spectroscopy to the structural identification of protein materials, Phys. Chem. Chem. Phys., 20, 11643 – 11648, (2018). doi: https://doi.org/10.1039/C8CP00802G
14 Khatib, O., Bechtel, H.A., Martin, M.C., Raschke, M.B., Carr, G.L.: Far infrared synchrotron near-field nanoimaging and nanospectroscopy, ACS Photonics., 5, 2773 – 2779, (2018). doi: https://doi.org/10.1021/acsphotonics.8b00565
15 Chen, H., Gao, L., Qin, Z., Ge, Y., Khan, K., Song, Y., Xie, G., Xu, S., Zhang, H.: Recent advances of low-dimensional materials in Mid- and Far-infrared photonics, Appl. Mater. Today, 21, 100800, (2020). doi: https://doi.org/10.1016/j.apmt.2020.100800
16 Bontemps, B., Gruet, M., Vercruyssen, F., Louis, J.: Utilisation of far infrared-emitting garments for optimising performance and recovery in sport: real potential or new fad? A systematic review, PLOS ONE, 16, e0251282, (2021). doi: https://doi.org/10.1371/journal.pone.0251282
17 Yang, W., Li, C., Han, L.: Mechanical properties of polycaprolactone bone scaffolds reinforced with carbon nanotube-modified tricalcium phosphate, Carbon Lett., (2024). doi: https://doi.org/10.1007/s42823-024-00788-0
18 Sharma, N., Shin, E.-J., Kim, N.H., Cho, E.-H., Nguyen, B.T., Jeong, J.H., Jang, C.G., Nah, S.-Y., Kim, H.-C.: Far-infrared Ray-mediated antioxidant potentials are important for attenuating psychotoxic disorders, Curr. Neuropharmacol., 17, 990 – 1002, (2019). doi: https://doi.org/10.2174/1570159X17666190228114318
19 Peng, T.-C., Chang, S.-P., Chi, L.-M., Lin, L.-M.: The effectiveness of far-infrared irradiation on foot skin surface temperature and heart rate variability in healthy adults over 50 years of age: A randomized study, Medicine (Baltimore), 99, e23366 (2020). doi: https://doi.org/10.1097/MD.0000000000023366
20 Loturco, I., Abad, C.C.C., Nakamura, F.Y., Ramos, S.P., Kobal, R., Gil, S., Pereira, L.A., Burini, F.H.P., Roschel, H., Ugrinowitsch, C., Tricoli, V.: Effects of far infrared rays emitting clothing on recovery after an intense plyometric exercise bout applied to elite soccer players: a randomized double-blind placebo-controlled trial, Biol. Sport, 33, 277 – 283, (2016). doi: https://doi.org/10.5604/20831862.1208479
21 Coelho, T.M., Nunes, R.F.H., Nakamura, F.Y., Duffield, R., Serpa, M.C., da Silva, J.F., Carminatt, L.J., Cidral-Filho, F.J., Goldim, M.P., Mathias, K., Petronilho, F., Martins, D.F., Guglielmo, L.G.A.: Post-match recovery in soccer with far-infrared emitting ceramic material or cold-water immersion, J. Sports Sci. Med., 20, 732 – 742, (2021). doi: https://doi.org/10.52082/jssm.2021.732
22 Bau, J.-G., Yang, C.-P., Huang, B.-W., Lin, Y.-S., Wu, M.-F.: Warming effect of blankets with high far-infrared emissivity on skin microcirculation in type 2 diabetic patients, Biomed. Eng. Appl. Basis Commun., 32, 2150003, (2020). doi: https://doi.org/10.4015/S1016237221500034
23 Carrick, F.R., Valerio, L.S.A., Gonzalez-Vega, M.N., Engel, D., Sugaya, K.: Accelerated wound healing using a novel far-infrared ceramic blanket, Life, 11, 878, (2021). doi: https://doi.org/10.3390/life11090878
24 Shi, F., Sun, H., Liu, H., Xu, G., Wang, J., Han, Y.: Correlation among far-infrared reflection modes, crystal structures and dielectric properties of Ba(Zn1/3Nb2/3)O3-CaTiO3 ceramics, Mater. Res. Bull., 75, 115 – 120, (2016). doi: https://doi.org/10.1016/j.materresbull.2015.11.036
25 Zhang, Y., Wang, L., Duan, Y., Liu, B., Liang, J.: Preparation and performance of Ce-doped far-infrared radiation ceramics by single iron ore tailings, Ceram. Int., 48, 11709 – 11717, (2022). doi: https://doi.org/10.1016/j.ceramint.2022.01.029
26 Jie liu, Gao, Z., Liang, J., Zhang, H., Meng, J.: Strengthening mechanism of far-infrared radiation of tourmaline in iron-tailing ceramics, Ceram. Int., 47, 25214 – 25220, (2021). doi: https://doi.org/10.1016/j.ceramint.2021.01.278
27 Deng, Y., Zhang, K., Yang, Y., Shi, X., Yang, L., Yang, W., Wang, Y., Chen, Z.-G.: Ce/Mn dual-doped LaAlO3 ceramics with enhanced far-infrared emission capability synthesized via a facile microwave sintering method, J. Alloy. Compd., 774, 434 – 442, (2019). doi: https://doi.org/10.1016/j.jallcom.2018.10.049
28 Xu, S.H., Hu, X.R., Fei, G.T., Huang, J.Y., Xia, K., Wang, B.: Design of ZnS nanospheres antireflective structure for mid and far infrared applications, Ceram. Int., (2024). doi: https://doi.org/10.1016/j.ceramint.2024.07.104
29 Zhang, Z., Xu, M., Ruan, X., Yan, J., Yun, J., Zhao, W., Wang, Y.: Enhanced radar and infrared compatible stealth properties in hierarchical SnO2@ZnO nanostructures, Ceram. Int., 43, 3443 – 3447, (2017). doi: https://doi.org/10.1016/j.ceramint.2016.11.034
30 Tsai, S.-R., Hamblin, M.R.: Biological effects and medical applications of infrared radiation, J. Photochem. Photobiol. B., 170, 197 – 207, (2017). doi: https://doi.org/10.1016/j.jphotobiol.2017.04.014
31 Lee, D., Seo, Y., Kim, Y.-W., Kim, S., Bae, H., Choi, J., Lim, I., Bang, H., Kim, J.-H., Ko, J.-H.: Far-infrared radiation stimulates platelet-derived growth factor mediated skeletal muscle cell migration through extracellular matrix-integrin signaling, Korean J. Physiol. Pharmacol., 23, 141 – 150, (2019).
32 Shemilt, R., Bagabir, H., Lang, C., Khan, F.: Potential mechanisms for the effects of far-infrared on the cardiovascular system – a review., VASA, (2018)
33 Yu, S., Chiu, J., Yang, S., Hsu, Y., Lui, W., Wu, C.: Biological effect of far-infrared therapy on increasing skin microcirculation in rats, Photodermatol. Photoimmunol. Photomed., 22, 78 – 86, (2006)
34 Li, M., Wang, M., Hou, X., Zhan, Z., Wang, H., Fu, H., Lin, C.-T., Fu, L., Jiang, N., Yu, J.: Highly thermal conductive and electrical insulating polymer composites with boron nitride, Compos. Part B Eng., 184, 107746 (2020)
35 Hou, X., Chen, Y., Lv, L., Dai, W., Zhao, S., Wang, Z., Fu, L., Lin, C.-T., Jiang, N., Yu, J.: High-thermal-transport-channel construction within flexible composites via the welding of boron nitride nanosheets, ACS Appl. Nano Mater., 2, 360 – 368, (2019)
36 Park, Y.-J., Lee, H.-K., Cho, J.-H.: Analysis of muscular elasticity according to infrared and ultrasound therapy by sonoelastography, J. Phys. Ther. Sci., 30, 1024 – 1029, (2018). doi: https://doi.org/10.1589/jpts.30.1024
37 Tsai, S.-R., Hamblin, M.R.: Biological effects and medical applications of infrared radiation, J. Photochem. Photobiol. B., 170, 197 – 207, (2017). doi: https://doi.org/10.1016/j.jphotobiol.2017.04.014
38 Cristiano, L.: Use of infrared-based devices in aesthetic medicine and for beauty and wellness treatments, Infrared Phys. Technol., 102, 102991, (2019). doi: https://doi.org/10.1016/j.infrared.2019.102991
39 Leung, T.K., Lee, C.M., Lin, M.Y., Ho, Y.S., Chen, C.S., Wu, C.H., Lin, Y.S.: Far infrared ray irradiation induces intracellular generation of nitric oxide in breast cancer cells, J. Med. Biol. Eng., 29, 15 – 18, (2009)
40 Leung, T.-K., Lin, Y.-S., Chen, Y.-C., Shang, H.-F., Lee, Y.-H., Su, C.-H., Liao, H.-C., Chang, T.-M.: Immunomodulatory effects of far-infrared ray irradiation via increasing calmodulin and nitric oxide production in raw 264.7 macrophages, Biomed. Eng. Appl. Basis Commun., 21, 317 – 323, (2009)
41 Leung, T.-K.: In vitro and in vivo studies of the biological effects of bioceramic (a material of emitting high performance far-infrared ray) irradiation, Chin J Physiol., 58, 147 – 155, (2015)
42 Park, J.-H., Lee, S., Cho, D.-H., Park, Y.M., Kang, D.-H., Jo, I.: Far-infrared radiation acutely increases nitric oxide production by increasing Ca2+ mobilization and Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179, Biochem. Biophys. Res. Commun., 436, 601 – 606, (2013). doi: https://doi.org/10.1016/j.bbrc.2013.06.003
43 Dörr, S., Schade, U., Hellwig, P.: Far infrared spectroscopy on hemoproteins: A model compound study from 1800 – 100 cm-1, Vib. Spectrosc., 47, 59 – 65, (2008). doi: https://doi.org/10.1016/j.vibspec.2008.02.003
44 Lin, C.-C., Lee, C.-L., Lung, C.-C.: Antioxidative effect of far-infrared radiation in human, J. Public Health Front, 2, 97 – 102, (2013).
45 da Silva, F.G., Herr, G.E.G., Cidral-Filho, F.J., Petronilho, F., Danielski, L.G., Florentino, D., Bobinski, F., Ludtke, D.D., Vieira, C., Martins, D.F., Winkelmann, E.R.: Antioxidant effect of far infrared radiation produced by bioceramics in individuals with intermittent Claudication: A randomized, controlled pilot study, Altern. Ther. Health Med., 25, 34 – 43, (2019).
46 Leung, T.-K., Shang, H.-F., Chen, D.-C., Chen, J.-Y., Chang, T.-M., Hsiao, S.-Y., Ho, C.-K., Lin, Y.-S.: Effects of far infrared rays on hydrogen peroxide-scavenging capacity, Biomed. Eng. Appl. Basis Commun., 23, 99 – 105, (2011)
47 Worobets, J.T., Skolnik, E.R., Stefanyshyn, D.J.: Apparel with far infrared radiation for decreasing an athlete's oxygen consumption during submaximal exercise, Res. J. Text. Appar., 19, 52 – 57, (2015)
48 Mantegazza, V., Contini, M., Botti, M., Ferri, A., Dotti, F., Berardi, P., Agostoni, P.: Improvement in exercise capacity and delayed anaerobic metabolism induced by far-infrared-emitting garments in active healthy subjects: A pilot study, Eur. J. Prev. Cardiol., 25, 1744 – 1751, (2018)
49 Nunes, R.F.H., Dittrich, N., Duffield, R., Serpa, M.C., Coelho, T.M., Martins, D.F., Guglielmo, L.G.A.: Effects of far-infrared emitting ceramic material clothing on recovery after maximal eccentric exercise, J. Hum. Kinet., 70, 135 – 144, (2019)
50 Ervolino, F., Gazze, R.: Far infrared wavelength treatment for low back pain: evaluation of a non-invasive device, Work, 53, 157 – 162, (2016). doi: https://doi.org/10.3233/WOR-152152
51 Hausswirth, C., Louis, J., Bieuzen, F., Pournot, H., Fournier, J., Filliard, J.-R., Brisswalter, J.: Effects of whole-body cryotherapy vs. far-infrared vs. passive modalities on recovery from exercise-induced muscle damage in highly-trained runners, PLOS ONE, 6, e27749, (2011). doi: https://doi.org/10.1371/journal.pone.0027749
52 He, J., Zheng, H., Xu, J., Zhang, Y.: Changes in three physical indicators of the muscle after far-infrared ceramic microsphere intervention, Chin. J. Tissue Eng. Res., 24, 3527, (2020)
53 Chen, T.C., Huang, Y.-C., Chou, T.-Y., Hsu, S.-T., Chen, M.-Y., Nosaka, K.: Effects of far-infrared radiation lamp therapy on recovery from muscle damage induced by eccentric exercise, Eur. J. Sport Sci., 23, 1638 – 1646, (2023)
54 Leung, T.-K., Lee, C.-M., Tsai, S.-Y., Chen, Y.-C., Chao, J.-S.: A pilot study of ceramic powder far-infrared ray irradiation (cFIR) on physiology: observation of cell cultures and amphibian skeletal muscle, Chin. J. Physiol., 54, 247 – 54, (2011)
55 Chang, Y.: The effect of far infrared radiation therapy on inflammation regulation in lipopolysaccharide-induced peritonitis in mice, SAGE Open Med., 6, 2050312118798941, (2018)
56 Lin, C.-C., Liu, X.-M., Peyton, K., Wang, H., Yang, W.-C., Lin, S.-J., Durante, W.: Far infrared therapy inhibits vascular endothelial inflammation via the induction of heme Oxygenase-1, Arterioscler. Thromb. Vasc. Biol., 28, 739 – 745, (2008). doi: https://doi.org/10.1161/ATVBAHA.107.160085
57 Leung, T.-K., Liu, Y.-C., Chen, C.-H., Fang, H., Chen, K.-C., Lee, C.-M.: In vitro cell study of the possible anti-inflammatory and pain relief mechanism of far-infrared ray emitting ceramic material, J. Med. Biol. Eng., 33, 179 – 184, (2013).
58 Bertuccioli, A., Cannataro, R., Gervasi, M., Benelli, P., Gregoretti, A., Ragazzini, M., Neri, M., Palazzi, C.M., Cardinali, M., Zonzini, G.: Preliminary Assessment of the Acute Effects of Far Infrared-Emitting Garments: What Are the Possible Implications for Recovery and Performance? Life, 13, 1998, (2023). doi: https://doi.org/10.3390/life13101998
Copyright
Göller Verlag GmbH