Articles
All articles | Recent articles
MgO·nGa2O3 (n = 0.98 – 1.2) Transparent Ceramics with Longer Infrared Cut-Off Edge
W. Tao1,2, D. Han2, J. Zhang2, Y. Shi1, S. Wang2
1 School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China.
2 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
received May 11, 2024, received in revised form May 20, 2024, accepted May 22, 2024
Vol. 15, No. 2, Pages 89-98 DOI: 10.4416/JCST2024-00009
Abstract
In the pursuit of infrared transparent ceramics derived from MgGa2O4 with an extended infrared cut-off edge, transparent ceramics of magnesium gallate spinel (MgO·nGa2O3) were synthesized by means of solid-state reactive sintering, followed by hot isostatic pressing (HIP) using MgO and Ga2O3 powders as raw materials. This approach yielded novel transparent MgO·nGa2O3 (0.98 ≤ n ≤ 1.2) ceramics, exhibiting an infrared cut-off edge at approximately 7.5 μm. The impact of composition (n) on the phase formation, densification rates, and microstructure evolution was thoroughly investigated. The in-line transmittance of the ceramics (thickness, 1 mm) was over 80 % in the 3 – 5 μm range. Notably, MgO·1.1Ga2O3 ceramics achieved 86.9 % transmittance at 4.6 μm, presenting promising prospects for infrared applications.
Download Full Article (PDF)
Keywords
Magnesium gallate spinel, transparent ceramics, composition control, reactive sintering, microstructure evolution
References
1 Hilton, A.R.: Infrared transmitting materials, J. Electron. Mater., 2, [2], 211 – 225, (1973).
2 Colin, M.F.: High Temperature Transmission Measurements of IR Window Materials. In: Infrared Optical Materials IV, 1988.
3 Harris, D.C.: Frontiers in infrared window and dome materials. In: Infrared Technology XXI, 1995.
4 Sanghera, J., Bayya, S., Villalobos, G., Kim, W., Frantz, J., Shaw, B., Sadowski, B., Miklos, R., Baker, C., Hunt, M., Aggarwal, I., Kung, F., Reicher, D., Peplinski, S., Ogloza, A., Langston, P., Lamar, C., Varmette, P., Dubinskiy, M., Desandre, L.: Transparent ceramics for high-energy laser systems, Opt Mater, 33, [3], 511 – 518, (2011).
5 Harris, D.C.: Durable 3 – 5 μm transmitting infrared window materials, Infrared Phys. Techn., 39, [4], 185 – 201, (1998).
6 Goldstein, A., Krell, A.: Transparent ceramics at 50: progress made and further prospects, J. Am. Ceram. Soc., 99, [10], 3173 – 3197, (2016).
7 Thomas, M.E., Tropf, W.J.: Advancements in MWIR window materials and structures. In: Window and Dome Technologies and Materials XIII, 2013.
8 Fabian, D., Posch, T., Mutschke, H., Kerschbaum, F., Dorschner, J.: Infrared optical properties of spinels, Astron. Astrophys., 373, [3], 1125 – 1138, (2001).
9 Wang, B., Wang, H., Chen, B.W., Xu, P.Y., Chen, Q.G., Tu, B.T., Wang, W.M., Fu, Z.Y.: A novel durable spinel-type ZnGa2O4 transparent ceramic with wide transmission range, Scr. Mater., 205, 114186, (2021).
10 Thomas, M.E., Joseph, R.I., Tropf, W.J.: Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency, Appl. Opt., 27, [2], 239 – 245, (1988).
11 Kao, Y.N., Huang, W.L., Chang, S.P., Lai, W.-C., Chang, S.-J.: Investigation of different oxygen partial pressures on MgGa2O4-resistive random-access memory, ACS Omega, 8, [4], 3705 – 3712, (2023).
12 Brown, J.J.: Manganese-activated luminescence in the MgO-Al2O3-Ga2O3 system, J. Electrochem. Soc., 114, [3], 245, (1967).
13 Kan, A., Moriyama, T., Takahashi, S., Ogawa, H.: Cation distributions and microwave dielectric properties of spinel-structured MgGa2O4 ceramics, Japan. J. Appl. Phys., 52, [9S1], 09KH01, (2013).
14 Mével, C., Carreaud, J., Delaizir, G., Duclère, J.-R., Brisset, F., Bourret, J., Carles, P., Genevois, C., Allix, M., Chenu, S.: First ZnGa2O4 transparent ceramics, J. Eur. Ceram. Soc., 41, [9], 4934 – 4941, (2021).
15 Weidenborner, J.E., Stemple, N.R., Okaya, Y.: Cation distribution and oxygen parameter in magnesium gallate, MgGa2O4, Acta Crystallogr., 20, [6], 761 – 764, (1966).
16 Casado, P.G., Rasines, I.: Crystal data for the spinels MGa2O4 (M = mg, Mn), Z. Kristallogr., 160, 1 – 2, 33 – 37, (1982).
17 Wang, L.L., Cui, X.J., Rensberg, J., Wu, K., Wesch, W., Wendler, E.: Growth and optical waveguide fabrication in spinel MgGa2O4 crystal, Nucl. Instrum. Meth. B, 409, 153 – 157, (2017).
18 Wu, S.P., Xue, J.J., Wang, R., Li, J.H.: Synthesis, characterization and microwave dielectric properties of spinel MgGa2O4 ceramic materials, J. Alloy. Compd., 585, 542 – 548, (2014).
19 Yang, M., Xu, P.Y., Wang, B., Zheng, K.P., Tu, B.T., Wang, H.: Influence of stoichiometric ratio on the microwave dielectric properties of MgO·nGa2O3 spinel ceramics, Journal of Synthetic Crystals, 51, [03], 508 – 515, (2022)
20 Zhang, G.R., Goldstein, A., Wu, Y.Q.: Novel transparent MgGa2O4 and Ni2+-doped MgGa2O4 ceramics, J. Adv. Ceram., 11, [3], 470 – 481, (2022).
21 Li, S.Q., Wang, H., Wang, B., Tu, B.T., Wang, W.M., Fu, Z.Y.: Exploring the relationship between crystalline structure and intrinsic properties for MgGa2O4 transparent ceramic with the bond valence method, J. Ceram. Sci. Tech., 12, [2], 87 – 96, (2021).
22 Ting, C.J., Lu, H.Y.: Defect reactions and the controlling mechanism in the sintering of magnesium aluminate spinel, J. Am. Ceram. Soc., 82, [4], 841 – 848, (1999).
23 Krell, A., Brendler, E.: Influences of cation disorder in commercial spinel powders studied by Al-27 MAS NMR on the sintering of transparent MgAl2O4 ceramics, J. Ceram. Sci. Tech., 4, 51 – 58, (2013).
24 Goldstein, A., Goldenberg, A., Vulfson, M.: Development of a technology for the obtainment of fine grain size, transparent MgAl2O4 spinel parts, J. Ceram. Sci. Tech., 2, 1 – 8, (2011).
25 Krell, A., Bales, A.: Grain size-dependent hardness of transparent magnesium aluminate spinel, Int. J. Appl. Ceram. Technol., 8, [5], 1108 – 1114, (2011).
26 Sheldon, R.I., Hartmann, T., Sickafus, K.E., Ibarra, A., Scott, B.L., Argyriou, D.N., Larson, A.C., Dreele, R.B.V.: Cation disorder and vacancy distribution in nonstoichiometric magnesium aluminate spinel, MgO·xAl2O3, J. Am. Ceram. Soc., 82, [12], 3293 – 3298, (1999).
27 Reddy, K.P.R., Cooper, A.R.: Oxygen diffusion in magnesium aluminate spinel, J. Am. Ceram. Soc., 64, [6], 368 – 371, (1981).
28 Chiang, Y.M., Kingery, W.D.: Grain-boundary migration in nonstoichiometric solid solutions of magnesium aluminate spinel: I, grain growth studies, J. Am. Ceram. Soc., 72, [2], 271 – 277, (1989).
29 Krell, A., Waetzig, K., Klimke, J.: Effects and elimination of nanoporosity in transparent sintered spinel (MgAl2O4). In: Window and Dome Technologies and Materials XII, 2011.
30 Marc, R.D.M., Kleebe, H.-J., Müller, M.M., Reimanis, I.E.: Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel, J. Am. Ceram. Soc., 96, [11], 3341 – 3365, (2013)
31 Han, D., Zhang, J., Liu, P., Li, G., An, L.Q., Wang, S.W.: Preparation of high-quality transparent Al-rich spinel ceramics by reactive sintering, Ceram. Int., 44, [3], 3189 – 3194, (2018).
32 Han, D., Zhang, J., Liu, P., Li, G., Wang, S.W.: Densification and microstructure evolution of reactively sintered transparent spinel ceramics, Ceram. Int., 44, [10], 11101 – 11108, (2018).
33 Lee, S.H., Kupp, E.R., Stevenson, A.J., Anderson, J.M., Messing, G.L., Li, X., Dickey, E.C., Dumm, J.Q., Simonaitis-Castillo, V.K., Quarles, G.J.: Hot isostatic pressing of transparent Nd:YAG ceramics, J. Am. Ceram. Soc., 92, [7], 1456 – 1463, (2009).
34 Tu, B.T., Tu, G.S., Wang, H., Yang, Z.F., Wang, W.M., Fu, Z.Y.: Highly transparent MgAl0.5Ga1.5O4 ceramic for overcoming the trade-off between infrared transmittance and mechanical properties, Scr. Mater., 216, 114756, (2022).
Copyright
Göller Verlag GmbH