Articles
All articles | Recent articles
Reactive-Sintered Low-Thermal-Expansion Cordierite Ceramic with High Stiffness
Y. Guo1,2, Y. Ge1, W. Liu1, J. Zhao1, J. Zhang1,2, S. Wang1,2
1 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
received March 22, 2024, received in revised form April 12, 2024, accepted April 16, 2024
Vol. 15, No. 2, Pages 69-78 DOI: 10.4416/JCST2024-00003
Abstract
Low-coefficient of thermal expansion (CTE)-cordierite ceramic is one of the key materials for integrated circuit substrates, lithography machines and space telescope mirrors. Cordierite ceramic with high stiffness was produced by means of reactive sintering combined with hot isostatic pressing (HIP) treatment. This paper investigated thoroughly the phase evolution and densification processes. The cordierite phase formed at 1 160 °C, and only the cordierite phase and a small amount of residual spinel phase were present in the ceramic above 1 300 °C. Meanwhile, the shrinkage of the sintered body was clearly observed from 1 130 °C and the densification rate reached a maximum at 1 190 °C. After pre-sintering at 1 350 °C and followed by 1 310 °C HIP, fully dense cordierite ceramic was obtained, and its specific stiffness and CTE reached 57.5 MPa·m3·kg-1, 1.75×10-6/°C (25 – 800 °C), respectively, i.e. values better than those of commercial cordierite products.
Download Full Article (PDF)
Keywords
Cordierite ceramics, reactive sintering. low coefficient of thermal expansion, phase evolution
References
1 Aguero, F.N., Morales, M.R., Duran, F.G., Barbero, B.P., Cadús, L.E.: MnCu/cordierite monolith used for catalytic combustion of volatile organic compounds, Chem. Eng. Technol., 36, [10], 1749 – 1754, (2013).
2 Kobayashi, Y., Sumi, K., Kato, E.: Preparation of dense cordierite ceramics from magnesium compounds and kaolinite without additives, Ceram. Int., 26, [7], 739 – 743, (2000)
3 Tummala, R.R.: Ceramic and glass-ceramic packaging in the 1990s, J. Am. Ceram. Soc., 74, [5], 895 – 908, (1991).
4 Terada, M., Kawamura, K., Kagomiya, I., Kakimoto, K., Ohsato, H.: Effect of ni substitution on the microwave dielectric properties of cordierite, J. Eur. Ceram. Soc., 27, [8 – 9], 3045 – 3048, (2007).
5 Lu, S.S., Zhang, J.D., Sun, Y.Y., Liu, H.C.: Preparation and characterization of CuO-CeO2-ZrO2/cordierite monolith catalysts, Ceram. Int., 43, [8], 5957 – 5962, (2017).
6 Obradović, N., Pavlović, V., Kachlik, M., Maca, K., Olćan, D., Đorđević, A., Tshantshapanyan, A., Vlahović, B., Pavlović, V.: Processing and properties of dense cordierite ceramics obtained through solid-state reaction and pressure-less sintering, Adv. Appl. Ceram., 118, [5], 241 – 248, (2018).
7 Suzuki, H., Ota, K., Saito, H.: Preparation of cordierite ceramics from metal alkoxides (Part 1), J. Ceram. Soc. Jpn., 95, [2], 163 – 169, (1987).
8 Nadafan, M., Majidi, R.: Study of optical constants and dielectric properties of nanocrystalline α-cordierite ceramic, J. Asian. Ceram. Soc., 8, [2], 502 – 509, (2020).
9 Hwang, S.-P., Wu, J.-M.: Effect of composition on microstructural development in MgO-Al2O3-SiO2 Glass-ceramics, J. Am. Ceram. Soc., 84, [5], 1108 – 1112, (2001).
10 Hamzawy, E.M.A., Al-Harbi, O.A.: Sintered mono-cordierite Mg2Al4–xBxSi5O18 glass-ceramic with B/Al replacement at the Nano- and micro-scale, Silicon., 10, [2], 439 – 444, (2016).
11 El-Buaishi, N.M., Janković-Častvan, I., Jokić, B., Veljović, D., Janaćković, D., Petrović, R.: Crystallization behavior and sintering of cordierite synthesized by an aqueous sol-gel route, Ceram. Int., 38, [3], 1835 – 1841, (2012).
12 Ning, W., Tang, Z., Han, Z., Ding, S., Xu, C., Zhang, P.: Effects of NH4VO3 on properties and structures of cordierite ceramics, J. Ceram. Sci. Technol., 9, [1], 47 – 52, (2018).
13 Ogiwara, T., Noda, Y., Shoji, K., Kimura, O.: Solid state synthesis and its characterization of high density cordierite ceramics using fine oxide powders, J. Ceram. Soc. Jpn., 118, [3], 246 – 249, (2010).
14 Ogiwara, T.: Low temperature sintering of α-cordierite ceramics with low thermal expansion using Li2O-Bi2O3 as a sintering additive, J. Ceram. Soc. Jpn., 119, [9], 706 – 709 (2011).
15 Sumi, K., Kobayashi, Y., Kato, E.: Low-temperature fabrication of cordierite ceramics from kaolinite and magnesium hydroxide mixtures with boron oxide additions, J. Am. Ceram. Soc., 82, [3], 783 – 785, (2004).
16 Fotoohi, B., Blackburn, S., Reimanis, I.: Study of phase transformation and microstructure in sintering of mechanically activated cordierite precursors, J. Am. Ceram. Soc., 95, [8], 2640 – 2646, (2012).
17 Goren, R., Gocmez, H., Ozgur, C.: Synthesis of cordierite powder from talc, diatomite and alumina, Ceram. Int., 32, [4], 407 – 409, (2006).
18 Tunç, T., Demirkıran, A.Ş.: The effects of mechanical activation on the sintering and microstructural properties of cordierite produced from natural zeolite, Powder. Technol., 260, 7 – 14, (2014).
19 Kuscer, D., Bantan, I., Hrovat, M., Malič, B.: The microstructure, coefficient of thermal expansion and flexural strength of cordierite ceramics prepared from alumina with different particle sizes, J. Eur. Ceram. Soc., 37, [2], 739 – 746, (2017).
20 Wang, W.B., Shi, Z.M., Wang, X.G., Fan, W.: The phase transformation and thermal expansion properties of cordierite ceramics prepared using drift sands to replace pure quartz, Ceram. Int., 42, [3], 4477 – 4485, (2016).
21 Goren, R., Ozgur, C., Gocmez, H.: The preparation of cordierite from talc, fly ash, fused silica and alumina mixtures, Ceram. Int., 32, [1], 53 – 56, (2006).
22 Geiger, C.A., Armbruster, T., Khomenko, V., Quartieri, S.: Cordierite I: the coordination of Fe2+, Am. Mineral., 85, [9], 1255 – 1264, (2000).
23 Gouby, I., Thomas, P., Trolliard, G., Mercurio, D., Frit, B., Senegas, J.: 29Si mas nmr study of the Al/Si ordering process in potassium doped-cordierites, ANN. CHIM-SCI. MAT., 23, [1], 131 – 134, (1998).
24 Obradović, N., Đorđević, N., Filipović, S., Nikolić, N., Kosanović, D., Mitrić, M., Marković, S., Pavlović, V.: Influence of mechanochemical activation on the sintering of cordierite ceramics in the presence of Bi2O3 as a functional additive, Powder. Technol., 218, 157 – 161, (2012).
25 Saheb, N., Lamara, S., Sahnoune, F., Hassan, S. F.: Kinetics of α-cordierite formation from nano-oxide powders, Ceram. Int., 48, [16], 23921 – 23930, (2022).
26 Chrétien, L., Bonnet, L., Boulesteix, R., Maître, A., Sallé, C., Brenier, A.: Influence of hot isostatic pressing on sintering trajectory and optical properties of transparent Nd:YAG ceramics, J. Eur. Ceram. Soc., 36, [8], 2035 – 2042, (2016).
27 Zhang, Y., Sang, S.B., Li, Y.W.: Inhibition mechanisms of silica sources on hydration of active magnesia, Refractories., 49, [04], 264 – 268, (2015).
28 d'Azevedo, C.A., de Assis, T.C., Silva, F.A.N.G., Siqueira, J. M., Garrido, F. M. S. Medeiros, M. E.: Preparation of α-cordierite through mechanochemical activation of MgO-Al2O3-SiO2 ternary system, Ceram. Int., 48, [13], 18658 – 18666, (2022).
29 Son, M.-A., Chae, K.-W., Kim, J.S., Kim, S.-H.: Crystal structure and thermal expansion coefficient of cordierite honeycomb ceramics, physica. status. solidi (a)., 216, [4], 1700994, (2019).
30 Son, M.-A., Chae, K.-W., Kim, J.S., Kim, S.-H.: Structural origin of negative thermal expansion of cordierite honeycomb ceramics and crystal phase evolution with sintering temperature, J. Eur. Ceram. Soc., 39, [7], 2484 – 2492, (2019).
31 Saheb, N., Alghanim, A.: Low temperature synthesis of highly pure cordierite materials by spark plasma sintering nano-oxide powders, Ceram. Int., 46, [15], 23910 – 23921, (2020).
32 Lamara, S., Redaoui, D., Sahnoune, F., Heraiz, M., Saheb, N.: Microstructure, thermal expansion, hardness and thermodynamic parameters of cordierite materials synthesized from algerian natural clay minerals and magnesia, BOL SOC ESP CERAM V., 60, [5], 291 – 06, (2021).
33 Valášková, M.: Clays, clay minerals and cordierite ceramics – A review, CERAM-SILIKATY., 59, [4], 331 – 340 (2015).
Copyright
Göller Verlag GmbH