Articles
All articles | Recent articles
Comparison of Sintering Behavior of Silver, Aluminum and Copper Thick Films on Alumina Substrates using a Screen-Printing Method
J. Fang1,2, T. Chen1,2, Y. Jiao1,2, Z. Zhang3, S. Dong1, Z. Huang1
1 School of Materials and Chemical Engineering, Bengbu University, Bengbu 233030, China
2 AnHui Provincial Engineering Research Center of Silicon-Based Materials, Bengbu 233030, China
3 Henan nuclear technology application center, Zhengzhou 450044, China
received April 22, 2024, received in revised form May 10, 2024, accepted June 3, 2024
Vol. 15, No. 2, Pages 79-88 DOI: 10.4416/JCST2024-00007
Abstract
Metal circuits prepared using the screen-printing method demonstrate excellent electrical conductivity and mechanical properties, making them well-suited for applications in flexible electronics, Si-solar cells, multilayer resistors, and microelectronic packaging. The objective of this study is to conduct a comparative analysis of the sintering behavior of thick-film circuits composed of silver, copper, and aluminum on alumina substrates. The investigation encompasses an examination of the surface and cross-sectional morphology, conductivity, and adhesion of the sintered metal circuits at various temperatures subsequent to screen printing. The experimental findings suggest that diverse metals exhibit contrasting microstructures, electrical properties, and adhesion characteristics. Specifically, in comparison to the network structure formed by sintering copper and aluminum films as base metals, the noble metal silver facilitates the formation of a continuous structure. As a result, silver films display lower surface resistance and higher adhesion. By comprehensively comparing the morphology and performance of different metal films, this study will offer valuable insights for the construction of multilayer thick-film circuits.
Download Full Article (PDF)
Keywords
Sintering behavior, noble and base metal, thick films, screen printing
References
1 Divya, P., Lee, W.H.: Fabrication of a flexible RFID antenna by using the novel environmentally friendly additive process, Int. J. Antennas Propag., 2023, 1 – 12, (2023).
2 Väätäjä, M., Kähäri, H., Ohenoja, K., Juuti, J., Jantunen, H.: Direct integration of dielectric all-ceramic thick films on a polymer substrate using room temperature fabrication, J. Eur. Ceram. Soc., 40, 3984 – 3988, (2020).
3 Zhou, Y.Y., Tong, H., Liu, Y.J., Yuan, S.L., Yuan X.: Rheological effect on screen-printed morphology of thick film silver paste metallization, J. Mater. Sci. Mater. Electron., 28, 5548 – 5553, (2017).
4 Yüce, C., König, M., Willenbacher, N.: Rheology and screen-printing performance of model silver pastes for metallization of si-solar cells, Coatings, 8, 406, (2018).
5 Li, D.Y., Yu J.C., Zheng, X., Yue C.X., Ding, L., Liu Y.: Exploration of tunable, low-depletion novel resistor paste system based on molybdenum-based functional phase modulation, J. Mater. Sci. Mater. Electron., 34, 1957, (2023).
6 Lopanov, A.N., Lozinskyy, N.S., Moroz, Ya.A.: Chemical processes accompanying the formation of modified ruthenium resistors and their functional properties, Russ. Chem. Bull., 69, 1724 – 1730, (2020).
7 Reinhardt, K., Hofmann, N., Eberstein, M.: The importance of shear thinning, thixotropic and viscoelastic properties of thick film pastes to predict effects on printing performance, 2017 21st Eur. Microelectron. Packag. Conf. EMPC Exhib., 1 – 7, (2017).
8 Lorenz, M., Travitzky, N., Rambo, C. R.: Effect of processing parameters on in situ screen printing-assisted synthesis and electrical properties of Ti3SiC2-based structures, J. Adv. Ceram., 10, 129 – 138, (2021).
9 Samanta, K.K.: Advanced multilayer thick-film technology and TFMS, CPW, and SIW up to 180 GHz for cost-effective ceramic-based circuits and modules, IET Microw. Antennas Propag., 12, 1064 – 1071, (2018).
10 Samanta, K.K.: Multilayer thick-film and next generation cost-effective millimetre-wave SoP circuit and system integration techniques, 2015 IEEE MTT- Int. Microw. RF Conf. IMaRC, 393 – 395, (2015).
11 Markowski, P.M.: Multilayer thick-film thermoelectric microgenerator based on LTCC technology, Microelectron. Int., 33, 155 – 161, (2016).
12 Reinhardt, K., Koerner, S., Partsch, U.: Thick film paste systems for multifunctional copper power modules. in CIPS 2020; 11th International Conference on Integrated Power Electronics Systems 1 – 7, (2020).
13 Tang, J.Y., Mak, C.H.H., Tam, S.K., Ng, K.M.: Formulation of a paste for copper thick film, J. Nanoparticle Res., 23, 166, (2021).
14 Ueyama, R., Ueyama, T., Koumoto, K., Kuribayashi, K.: Dependence of sintered electrode ni paste on dispersed ni paste and ni powder properties, J. Ceram. Soc. Jpn., 109, 447 – 452, (2001).
15 Hlina, J., Reboun, J., Hamacek, A.: Characterization of thick film pastes for aluminum nitride substrates, 2021 44th Int. Spring Semin. Electron. Technol. ISSE, 1 – 4, (2021).
16 Wang, M.Z., Dong, H.L., Mao, X.B., Wang, W.F., Xiong J.J., Tan, Q.L.: Thermally matched multilayer ceramic composite insulating layers for high-temperature thick/thin-film sensors on nickel-based superalloy, Ceram. Int., 50, 3852 – 3860, (2024).
17 Telnikov, Ye. Ya., Chernyshyn, O.G., Nedbailo, O.M., Khmara, I.O.: Structure and mechanism of electrical conductivity of resistive compositions for thick-film metal-ceramic heating elements, Керамiка Наука Жummя, 23 – 28, (2019).
18 Hlina, J., Reboun, J., Hamacek, A.: Behaviour of printed resistors compatible with thick film copper technology. in 2022 IEEE 9th Electronics System-Integration Technology Conference (ESTC), 228 – 232, (2022).
19 Hlina, J., Reboun, J., Hamacek, A.: Study of copper-nickel nanoparticle resistive ink compatible with printed copper films for power electronics applications, Materials, 14, 7039, (2021).
20 Jiang, Q., Li, J.H., Li, A., Zhou, D.D., Zeng, H.D.: Surface hydroxyl modification for silicate-stabilized low-melting glassy tellurite adhesive enabling low resistance of silver conductive paste, J. Non-Cryst. Solids, 598, 121959, (2022).
21 Buck, T., Peng, Z.W., Dhamrin, M.: Study on Al metal paste contacting n+ doped Si surfaces for industrial solar cell application. in 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), 1540 – 1542, (2020).
22 Lee, W.H., Puteri, N.G., Kuo, C.R.: Thick film of modified aluminum with conductivity similar to silver, MRS Commun., 13, 473 – 479, (2023).
23 Joonwichien, S., Moriya, M., Utsunomiya, S., Kida, Y., Shirasawa, K., Takato, H.: Mechanism of metallization-induced losses in the rear-side of fully screen-printed p-type PERC solar cells, IEEE J. Photovolt., 10, 407 – 416, (2020).
24 Hlina, J., Reboun, J., Hamacek, A.: Study of copper thick film metallization on aluminum nitride, Scr. Mater., 176, 23 – 27, (2020).
25 Fang, J., Fu, R.L., Gu, X.G., Zhang, X.Y., Li, G.J.: The synthesis of multi-layer silver, copper and aluminum thick films on alumina substrates using a screen-printing method, J. Ceram. Sci. Technol., 11, 103 – 110, (2020).
26 Reboun, J., Hlina, J., Totzauer, P., Hamacek, A.: Effect of copper- and silver-based films on alumina substrate electrical properties, Ceram. Int., 44, 3497 – 3500, (2018).
27 Liu, Y.C., Zhang L.Y., Yu, X.L., Li, W.C., Li, J.P., Gan, G.Y.: The silver paste containing ZnO-B2O3 -SiO2 glass sintered at high temperature with low solid content formed high performance conductive thick film on MgTiO3 microwave ceramics, Mater. Res. Express, 10, 045201, (2023).
28 Liu, T.X., Wan, J., You, Y.C., Zhuo, N.Z., Wang H.B.: Research of microscale silver particle paste on Al2O3, pre-dried dielectric layer and pre-fired dielectric layer substrate by a co-firing process, Mater. Res. Express, 7, 046303, (2020).
29 Sun, Q., Qi, Y., Li, M.Y., Xu, H.B., Li, Y.F.: Synthesis of PVZ glass and its improvement on mechanical and electrical properties of low temperature sintered silver paste, J. Mater. Sci. Mater. Electron., 31, 8086 – 8098, (2020).
30 Gao, Y.J., Feng, J.J., Liu, F., Liu, Z.F.: Effects of organic vehicle on the rheological and screen-printing characteristics of silver paste for LTCC thick film electrodes, Materials, 15, 1953, (2022).
31 Ji, S.Y., Shi, Y., Chen, C., Zhang, C.Y., Hu, C.C., Xie, J.J.: Investigation of interfacial properties of Cu/AlN composite ceramic substrates derived from copper paste containing TeO2-V2O5-CuO glass frit, J. Mater. Sci. Mater. Electron., 33, 13339 – 13351, (2022).
32 Wang, J.Y., Lin, Y.X., Wu, C.Y., et al.: Effect of mixing glass frits on electrical property and microstructure of sintered Cu conductive thick film, J. Am. Ceram. Soc., 104, 1707 – 1715, (2021).
33 Naderi-Samani, H., Razavi, R.S., Mozaffarinia, R.: The effects of complex agent and sintering temperature on conductive copper complex paste, Heliyon, 8, e12624, (2022).
Copyright
Göller Verlag GmbH