Articles
All articles | Recent articles
Enhanced Fracture Strength and Toughness of Zirconia by Coating the Pre-Stressed Mullite-Zirconia
J. Zhijie1,2, F. Shuai2, L. Haiyan2, B. Yiwan2, Z. Cheng1, W. Detian2
1 Shanghai Institute of Technology, School of Materials Science and Engineering, Shanghai 201418, China;
2 China Building Materials Academy State Key Laboratory of Green Building Materials, Beijing 100024, China
received November 20, 2023, received in revised form December 20, 2023, accepted January 11, 2024
Vol. 15, No. 1, Pages 21-28 DOI: 10.4416/JCST2023-00016
Abstract
In this work, we prepared mullite-zirconia/zirconia pre-stressed composites with excellent mechanical properties by means of pressureless sintering. Both the strength and toughness of zirconia could be significantly enhanced with the application of a pre-stressed coating. The optimal mechanical properties were obtained when the content of mullite in the coating was 40 wt%. The corresponding flexural strength and fracture toughness were 1250.48 ± 43.81 MPa and 12.39 ± 0.87 MPa·m1/2, an improvement of 39.15 % and 26.8 % compared with the values of zirconia, respectively. Basis for this reinforcement mechanism is that the achieved residual compressive stresses in the mullite-zirconia coating can simultaneously improve the strength and prevent crack propagation. The outstanding properties of mullite-zirconia/zirconia pre-stressed composites make these promising candidates for advanced manufacturing.
Download Full Article (PDF)
Keywords
Pre-stressed strengthening, zirconia ceramics, mechanical properties, mullite
References
1 Zhang, S.W.: High temperature ceramic materials, Materials, 14, [8], 2031, (2021). doi: https://doi.org/10.3390/ma14082031.
2 Chang, Y.W., Yao, X.Y., Chen, Y.Y., et al.: Review on ceramic-based composite phase change Materials: preparation, characterization and application, Compos. Part B-Eng, 254, 110584, (2023). doi: https://doi.org/10.1016/j.compositesb.2023.110584.
3 Shi, G.P.: The Summary of Fiber Reinforced Ceramic Matrix Composites, Ceramics, (2009). doi: https://doi.org/10.19397/j.cnki.ceramics.2009.01.005.
4 Silvestroni, L., Sciti, D., and Melandri, C., et al.: Toughened ZrB2-based ceramics through SiC whisker or SiC chopped fiber additions, J. Eur. Ceram. Soc., 30, [11], 2155 – 2164, (2010). doi: https://doi.org/10.1016/j.jeurceramsoc.2009.11.012.
5 Wang, X., Guo, A.R., and Liu, J.P., et al.: Effects of in-situ synthesized mullite whiskers on compressive strength of mullite fiber brick, Ceram. Int., 42, [11], 13161 – 13167, (2016). doi: https://doi.org/10.1016/j.ceramint.2016.05.107.
6 Lin, J., Zhang, X.H., Han, W.B., Jin, H.: The hybrid effect of SiC whisker coupled with ZrO2 fiber on microstructure and mechanical properties of ZrB2-based ceramics, Mat. Sci. Eng. A-Struct., 551, 187 – 191, (2012). doi: https://doi.org/10.1016/j.msea.2012.05.006.
7 Shen, J.X., Li, X.L., Zou, W.G.: Study on mechanism of Ni3Al toughened Al2O3 ceramic, Shandong Ceram., 3, 4, (2000). https://kns.cnki.net/kcms/detail/detail.aspx?FileName=BOWL200003000&DbName=CJFQ2000.
8 Zhao, X.J., Guo, L., Cai, Z.Y., et al.: SiC and ZrN nano-particulate reinforced AlON Composites: preparation, mechanical properties and toughening mechanisms, Ceram. Int., 42, [5], 6072 – 6079, (2016). doi: https://doi.org/10.1016/j.ceramint.2015.12.164.
9 Liu, L., Shinozaki K.: Brittle-Ductile transition and toughening of silica glass via ni nanoparticle incorporation at a small volume fraction, J. Alloy Compd., 940, 168874, (2023). doi: https://doi.org/10.1016/j.jallcom.2023.168874.
10 Hideaki, T.: Enhancement of transformation toughening of partially stabilized zirconia by some additives, Ceram. Int., 48, [14], 20675 – 20689, (2022). doi: https://doi.org/10.1016/j.ceramint.2022.04.047.
11 Butler, E.P.: Transformation-toughened zirconia ceramics, Mater. Sci. Tech.-Lond., 1, [6], 417 – 432, (2013). doi: https://doi.org/10.1179/mst.1985.1.6.417.
12 Kelly, P.M., Francis Rose, L.R.; The Martensitic Transformation in Ceramics — Its Role in Transformation Toughening, Prog. Mater. Sci., 47, 463 – 557, (2002). doi: https://doi.org/10.1016/S0079 – 6425(00)00005 – 0.
13 Hideaki, T.: Design against fracture of functionally graded thermal barrier coatings using transformation toughening, Mat. Sci. Eng. A-Struct., 527, [13 – 14], 3217 – 3226, (2010). doi: https://doi.org/10.1016/j.msea.2010.01.087.
14 Gong, J.H.: Microstructural Effects in Brittle Fracture of Ceramics, Adv. Ceram., 42, [5 – 6], 287 – 428, (2021). doi: https://doi.org/10.16253/j.cnki.37 – 1226/tq.2021.05.001.
15 Bao, Y.W., Kuang, F.H., Sun, Y., et al.: A simple way to make pre-stressed ceramics with high strength, J. Materiomics, 5, [4], 657 – 662, (2019). doi: https://doi.org/10.1016/j.jmat.2019.06.001.
16 Bao, Y.W., Sun, Y., Kuang, F.H., et al.: Development and prospects of high strength pre-stressed ceramics, J. Inorg. Mater., 35, [4], 399 – 406, (2019). doi: https://doi.org/10.15541/jim20190360.
17 Bao, Y.W., Wan, D.T., Wang, C.A., et al.: Effects of residual stress on strength and crack resistance in ZrO2 ceramics with alumina coating, J. Inorg. Mater., 37, [4], 467 – 472, (2022). doi: https://doi.org/10.15541/jim20210412.
18 Hao, H.J., Li, Y.M., Bao, Y.W., et al.: Enhanced flexural strength and thermal shock resistance of alumina ceramics by Mullite/Alumina pre-stressed Coating., J. Inorg. Mater., 37, [12], 1295 – 1301, (2022). doi: https://doi.org/10.15541/jim20220238.
19 Bao, Y.W.: Methods and techniques for the mechanical property evaluation of advanced ceramics; China Building Materials Press: Beijing, China, 130 – 133, (2017).
20 SAC/TC 194. GB/T 6569 – 2006. Fine Ceramics(Advanced Ceramics, Advanced Technical ceramics)--Test Method for Flexural Strength of Monolithic ceramics at Room Temperature. Beijing: Standards Press of China, 2006.
21 SAC/TC 194. GB/T23806 – 2009. Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)-Test Method for Fracture Toughness of Monolithic Ceramics at room temperature by Single Edge Precracked Beam (SEPB) Method. Beijing: Standards Press of China, 2009.
22 Bao, Y.W., Su, S.B., Yang, J.J., Huang, Z.R.: Residual stress analysis in unsymmetrical laminated ceramics by non-uniform strain model, J. Chin. Ceram. Soc., 5, 579 – 584, (2002). https://kns.cnki.net/kcms/detail/detail.aspx?FileName=GXYB200205008&DbName=CJFQ2002.
23 Srdi, V., Radonji, L.: Transformation toughening in sol-gel-derived alumina-zirconia composites, J. Am. Ceram. Soc., 80, [8], 2056 – 2060, (2005). doi: https://doi.org/10.1111/j.1151 – 2916.1997.tb03089.x.
24 Zhigachev, A.O., Rodaev, V.V., Zhigacheva, D.V.: The Effect of Titania Doping on Structure and Mechanical Properties of Calcia-Stabilized Zirconia Ceramic, J. Mater. Res. Technol., 8, [6], 6086 – 6093, (2019). doi: https://doi.org/10.1016/j.jmrt.2019.10.002.
25 Basu, B., Vleugels, J., Biest, O.V.: Toughness tailoring of yttria-doped zirconia ceramics, Mat. Sci. Eng. A-Struct., 380, [1 – 2], 215 – 221, (2004). doi: https://doi.org/10.1016/j.msea.2004.03.065.
26 Hideaki, T.: Enhancement of transformation toughening of partially stabilized zirconia by some additives, Ceram Int,, 48, [14], 20675 – 20689, (2022). doi: https://doi.org/10.1016/j.ceramint.2022.04.047.
27 Li, S., Wei, C.C., Wang, Pen, et al.: Fabrication of ZrO2 whisker modified ZrO2 ceramics by oscillatory pressure sintering, Ceram. Int., 46, [11], 17684 – 17690, (2020). doi: https://doi.org/10.1016/j.ceramint.2020.04.071.
28 Zhang, J., Zhu, T.B., Cheng, Y., et al.: Fabrication and mechanical properties of ZrO2-Al2O3-SiC(W) composites by oscillatory pressure sintering, Ceram. Int., 46, [16], 25719 – 25725, (2020). doi: https://doi.org/10.1016/j.ceramint.2020.07.048.
29 Ibrahim, O.H., Kolthoum I.O., Ahmed A.H., et al.: Synthesis and mechanical properties of Zirconia-Yttria Matrices/Alumina short fibre composites, Arab J. Sci. Eng., 45, [6], 4959 – 4965, (2020). doi: https://doi.org/10.1007/s13369 – 020 – 04542 – 2.
30 Li, X.W., Fan, X.H., Ni, N., et al.: Continuous alumina fiber-reinforced yttria-stabilized zirconia composites with high density and toughness, J. Eur. Ceram. Soc., 40, [4], 1539 – 1548, (2020). doi: https://doi.org/10.1016/j.jeurceramsoc.2019.12.041.
31 Daniel, T., Vick, M.J., Giuliani, F., Vandeperre, L.J.: High-temperature fracture toughness of mullite with monoclinic zirconia, J. Am. Ceram. Soc., 100, [4], 1570 – 1577, (2017). doi: https://doi.org/10.1111/jace.14637.
32 Smirnov, A., Bartolomé, J.F.: Microstructure and mechanical properties of ZrO2 ceramics toughened by 5 – 20 vol% ta metallic particles fabricated by pressureless sintering, Ceram. Int., 40, [1], 1829 – 1834, (2014). doi: https://doi.org/10.1016/j.ceramint.2013.07.084.
33 Bartolomé, J.F., Beltrán, J.I., Gutiérrez-González, C.F., et al.: Influence of Ceramic-Metal Interface Adhesion on Crack Growth Resistance of ZrO2-Nb Ceramic Matrix Composites, Acta Mater., 56, [14], 3358 – 3366, (2008). doi: https://doi.org/10.1016/j.actamat.2008.03.021.
34 Song, J.P., Cao, L., Jiang, L.K., et al.: Effect of HfN, HfC and HfB2 additives on phase transformation, microstructure and mechanical properties of ZrO2-based ceramics, Ceram. Int., 44, [5], 5371 – 5377, (2018). doi: https://doi.org/10.1016/j.ceramint.2017.12.164.
35 Cheng, C., Chen, H., Xue, H.F., Guo, L.C.: Mechanical and thermal behaviour of zirconia-mullite composites, J. Ceram., 31, [4], 601 – 606, (2010). doi: https://doi.org/10.13957/j.cnki.tcxb.2010.04.020.
36 Liu, P.F., Zhuan, L., Peng, X., et al.: Microstructure and mechanical properties of in-situ grown mullite toughened 3y-tzp zirconia ceramics fabricated by gelcasting, Ceram. Int., 44, [2], 1394 – 1403, (2018). doi: https://doi.org/10.1016/j.ceramint.2017.09.151.
37 Imose, M., Ohta, A., Takano, Y., Yoshinaka, M., et al.: Low-temperature sintering of Mullite/Yttria-doped zirconia composites in the mullite-rich region, J. Am. Ceram. Soc., 81, [4], 1050 – 1052, (2005). doi: https://doi.org/10.1111/j.1151 – 2916.1998.tb02447.x.
38 Bao, Y.W., Kuang, F.H., Ma, D.L.: Evaluation of coating properties and design of physical properties of coated composite ceramics based on relative method, Adv. Ceram., 43, [5 – 6], 325 – 334, (2022). doi: https://doi.org/10.16253/j.cnki.37 – 1226/tq.2022.06.002.
39 Bao, Y.W., Zhou, Y.C., Bu, X.X., Qiu, Y.: Evaluating elastic modulus and strength of hard coatings by relative method, Mat. Sci. Eng. A-Struct., 458, [1 – 2], 268 – 274, (2007). doi: https://doi.org/10.1016/j.msea.2006.12.131.
Copyright
Göller Verlag GmbH