Articles
All articles | Recent articles
Characterization and Dielectric Behavior of Varied Sintering-Accelerator-Doped Magnesium Titanates at Microwave Frequency
C.-H. Shen
Department of Electronic Engineering, Ming Chuan University, 5 De Ming Rd., Gui Shan District, Taoyuan City 333, Taiwan
received September 19, 2023, received in revised form November 22, 2023, accepted December 12, 2023
Vol. 15, No. 1, Pages 49-54 DOI: 10.4416/JCST2023-00013
Abstract
To lower the phase-forming temperature of magnesium titanate, MgTiO3, magnesium ions were replaced with 0.05 mole of cobalt ions and diverse low-melting-point materials were as sintering accelerators. The phase formation of 0.9Mg0.95Co0.05TiO3 – 0.1Ca0.61Nd0.78/3TiO3 dielectric ceramics was verified by means of XRD diffraction to observe the crystallites of varied phases. SEM was used to observe the particle growth of the ceramic system and the composition ratio of the particles was analyzed by means of EDS. In contrast with the pure 0.9Mg0.95Co0.05TiO3 – 0.1 Ca0.61Nd0.78/3TiO3 dielectric ceramics, the results show that the sintering temperature can be effectively decreased. The microwave dielectric performances of 0.9Mg0.95Co0.05TiO3 – 0.1Ca0.61Nd0.78/3TiO3 dielectric ceramics are closely related to the density and the growth of particles in the specimens. When 0.25 wt% V2O5 were added to the 0.9Mg0.95Co0.05TiO3 – 0.1 Ca0.61Nd0.78/3TiO3, the dielectric ceramics showed an εr value of 21.7, a Qf value of 71 000 GHz, and a τf value of -22.7 ppm/K, while the sintering temperature was reduced from 1 350 °C to 1 250 °C (that is about 100 °C). The results are almost identical for the different accelerators, but some of them have a more significant negative effect on the dielectric performance.
Download Full Article (PDF)
Keywords
Dielectric ceramics, low melting point, phase formation, microwave dielectric performances, sintering accelerator
References
1 Zhu, S.K. et al.: 5G microstrip patch antenna and microwave dielectric properties of 4 mol%LiF-MgO-xwt%MTiO3 (M = Ca, Sr) composite ceramics, J. Mater. Sci. Mater Electron., 32, [19], 23880 (2021).
2 Antipov, O.L., Novikov, A.A., Eranov, I.D.: In Proceedings of the 2014 Int. Conf. Laser Optics, St. Petersburg, Russia, (2014).
3 Jang, Y., Kim, J., Kim, S.: Design and fabrication of a compact 3-dimensional stacked type dielectric ceramic waveguide bandpass filter, IEEE Microw. Wirel. Common. Lett., 24, 665 – 667, (2014).
4 Paul, M.C., Dhar, A., Das, S.: IEEE Photonics, 7, 1 – 7 (2015).
5 Palmero, P.: Structural ceramic Nanocomposites: A review of properties and Powders' synthesis methods, Nanomaterials, 5, 656 – 696, (2015).
6 Penn, S.J., Alford, N.M.: Effect of porosity and grain size on the microwave dielectric properties of sintered alumina, J. Am. Ceram. Soc., 80, 1885 – 1888, (1997).
7 Kretly, L.C., Almeida, A.F.L., Fechine, P.B.A.: Dielectric permittivity and loss of CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas, J. Mater. Sci. Mater. Electron., 15, 657 – 663, (2004).
8 Tang, B., Xiang, Q., Fang, Z.X.: Influence of Cr3+ substitution for Mg2+ on the crystal structure and microwave dielectric properties of CaMg1-xCr2x/3Si2O6 ceramics, Ceram. Int., 45, 11484 – 11490, (2019).
9 Sohn, J.H., Inaguma, Y., Yoon, S.O.: Microwave dielectric characteristics of ilmenite-type titanates with high Q values, Jpn. J. Appl. Phys., 33, 5466, (1994).
10 Wakino, K.: Recent development of dielectric resonator materials and filters in japan, Ferroelectrics, 91, 69 – 86, (1989).
11 Yuan, S., Gan, L., Ning, F.: High-Q×f 0.95 MgTiO3-0.05 CaTiO3 microwave dielectric ceramics with the addition of LiF sintered at medium temperatures, Ceram. Int., 44, 20566 – 20569, (2018).
12 Huang, C.L., Pan, C.L.: Dielectric properties of (1-x)(Mg0. 95Co0. 05) TiO3-xCaTiO3 ceramic system at microwave frequency, Mater. Res. Bull., 37, 2483 – 2490, (2002).
13 Huang, C.L., Shen, C.H.: Dielectric properties and applications of low loss (1-x)(Mg0. 95Co0. 05) TiO3-xCa0. 8Sm0. 4/3TiO3 ceramic system at microwave frequency, J. Alloy. Compd., 468, 516 – 521, (2009).
14 Shen, C.H., Pan, C.L.: Structure, dielectric properties, and applications of (Na0. 5Sm0. 5) TiO3-modified (Mg0. 95Ni0. 05) TiO3 ceramics at microwave frequency, Mater. Res. Bull., 65, 169 – 174, (2015).
15 Ullah, A., Iqbal, Y., Mahmood, T.: Kinetic analysis on the synthesis of Mg0. 95Zn0. 05TiO3 microwave dielectric ceramic by polymeric precursor method, Ceram. Int., 41, 15089 – 15096, (2015).
16 Huang, C.L., Pan, C.L., Shen, C.H.: J. Mater. Sci., 21, 149 – 151 (2002).
17 Fu, Z.F., Chen, X.Y., Yang, Z.Y.: Enhanced temperature stability of Mg2TiO4-based ceramics by LCB additive and temperature-stable characterization, Ceram. Int., 48, 36638 – 36643, (2022).
18 Shen, C.H., Huang, C.L.,: Characterization and dielectric behavior of B2O3-doped 0.9 Mg0. 95Co0. 05TiO3-0.1 Ca0. 6La0. 8/3TiO3 ceramic system at microwave frequency, J. Alloy. Compd., 504, 228 – 232, (2010).
19 Zhifen, F., Yubin, S., Zhongyi, Y.: Novel temperature-stable MgTi0.95Sn0.05O3-based microwave dielectric ceramics, Integrated Ferroelectrics, 231, 98 – 105, (2023).
20 Yu, H., Luo, T.: Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): joining processes, joint strength, and interfacial behavior, J. Adv. Appl. Ceram., 118, 98 – 105, (2019).
21 Pan, C.L., Shen, C.H.: The enhanced phase-forming capacity of (1-x)Mg0.95Co0.05TiO3-xCa0.6La0.8/3TiO3 dielectric ceramics modified using multiple sintering aids, Crystals, 13, [6], 927, (2023).
22 Hakki, B.W., Coleman P.D.: A dielectric resonator method of measuring inductive capacities in the millimeter range, IRE Trans. Microwave Theory Tech., 8, 402 – 410, (1960).
23 Courtney, W. E.: Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators, IEEE Trans. Microwave Theory Tech., 18, 476 – 485, (1970).
24 Liao, J., Senna, M.: Crystallization of titania and magnesium titanate from mechanically activated Mg(OH)2 and TiO2 gel mixture, Mater. Res. Bull., 30, 385, (1995).
25 Silverman, B.D.: Microwave absorption in cubic strontium titanate, Phys. Rev., 125, 1921, (1962).
26 Huang, C.L., Shen, C.H.: Phase evolution and dielectric properties of (Mg0.95M0.052+)Ti2O5 (M2+=Co, ni, and Zn) ceramics at microwave frequencies, J. Am. Ceram. Soc., 92, 384, (2009).
27 Huang, C.L., Liu S.S.: Dielectric characteristics of the (1-x) Mg2TiO4-xSrTiO3 ceramic system at microwave frequencies, J. Alloy. Compd., 471, L9 – L12, (2009).
28 Huang, C.L., Liu, S.S.: Dielectric properties of a new ceramic system (Mg0. 95Zn0. 05)2TiO4-CaTiO3 at microwave frequencies, Jpn. J. Appl. Phys., 48, 071402, (2009).
29 Shen, C.H., Pan, C.L.,: Dielectric properties and applications of low-loss (1-x)(Mg0.95Ni0.05)2TiO4-xSrTiO3 ceramic system at microwave frequency, Int. J. Appl. Ceram. Technol., 12, E127 – E133 (2015).
30 Gurevich, G.L., Tagantsev, A.K.: Microwave ceramics for resonators and filters, Low temperature. Sov. Phys. JETP, 64, 142 – 151, (1986).
31 Gurevich, G.L., Tagantsev, A.K.: Intrinsic dielectric loss in crystals, Adv. Phys., 40, 719 – 767, (1991).
32 Kajfezz, D., Guillon, P., Tucker, G.A. USA; pp. 10 – 62 (1998).
Copyright
Göller Verlag GmbH