Articles
All articles | Recent articles
Enhancing the Mechanical Properties of (Hf-Ta-Ti-Zr-Nb)C High-Entropy Carbides Using a Multi-Step Spark Plasma Sintering Process
J. Song1, J. Seok1,2, S.-Y. Kim1,2, J. Han1, H. Kim1
1 Korea Institute of Industrial Technology, 156, Gaetbeol-ro, Yeonsu-gu, Incheon, Republic of Korea
2 Department of Materials Science and Engineering, INHA UNIVERSITY, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
received May 11, 2023, received in revised form August 3, 2023, accepted August 12, 2023
Pages 81-88 DOI: 10.4416/JCST2023-00008
Abstract
In this study, we investigate a multi-step spark plasma sintering (SPS) process for (Hf-Ta-Ti-Zr-Nb)C high-entropy carbides to produce dense, homogeneous carbide materials with superior mechanical properties. The process consists of compacting a high-entropy carbide powder mixture into a green body and sintering it under high-temperature plasma generated by a pulsed direct current voltage. The single-step of SPS achieves partial densification and solidification of the carbide material, while the multi-step process involves enhancing the microstructure and mechanical properties of the final product. Our results demonstrate that the multi-step SPS process effectively produces high-entropy carbides that are denser and harder, with improved mechanical properties. This establishes the multi-step SPS process as a promising technique for the fabrication of advanced carbide materials.
Download Full Article (PDF)
Keywords
High-entropy carbide, multi-step spark plasma sintering, mechanical properties
References
1 Yeh, J.W., Chen, Y.L., Lin, S.J., Chen, S.K.: High-entropy alloys – a new era of exploitation, Mater. Sci. Forum., 560, 1 – 9, (2007).
2 Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal Elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 299 – 303, (2004).
3 Ji, W., Wang, W., Wang, H., Zhang, J., Wang, Y., Zhang, F., Fu, Z.: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering, Intermetallics, 56, 24 – 7, (2015).
4 Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater., 61, 5743 – 5755, (2013).
5 Anand, G., Wynn, A.P., Handley, C.M., Freeman, C.L.: Phase stability and distortion in high-entropy oxides, Acta Mater., 146, 119 – 125, (2018).
6 Huang, Y.S., Chen, L., Lui, H.W., Cai, M.H., Yeh, J.W.: Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy, Mater. Sci. Eng. A., 457, 77 – 83, (2007).
7 Wen, L.H., Kou, H.C., Li, J.S., Chang, H., Xue, X.Y., Zhou, L.: Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy, Intermetallics, 17, 266 – 269, (2009).
8 Cantor, B., Chang, I.T.H., Knight, P., Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., A., 375, 213 – 218, (2004)
9 Tsai, M.H., Yeh, J.W.: High-entropy Alloys: A critical review, Mater. Res. Lett., 2, 107 – 123, (2014).
10 He, J.Y., Wang, H., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., Liu, X.J., Nieh, T.G., An, K., Lu, Z.P.: A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., 102, 187 – 196, (2016).
11 Ye, B., Wen, T., Huang, K., Wang, CZ., Chu, Y.: First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic, J. Am. Ceram. Soc., 102, 4344 – 4352, (2019).
12 Dusza, J., Švec, P., Girman, V., Sedlák, R., Castle, E.G., Csanádi, T., Kovalčíková, A., Reece, M.J.: Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level, J. Eur. Ceram. Soc., 38, 4303 – 4307, (2018).
13 Zhang, R.Z., Reece, M.J.: Review of high entropy Ceramics: design, synthesis, structure and properties, J. Mater. Chem. A., 7, 22148 – 22162, (2019).
14 Yang, Y., Wang, W., Gan, G.Y., Shi, X.F., Tang, B.Y.: Structural, mechanical and electronic properties of (TaNbHfTiZr)C high entropy carbide under Pressure: ab initio investigation, Physica B., 550, 163 – 170, (2018).
15 Harrington, T.J., Gild, J., Sarker, P., Toher, C., Rost, C.M., Dippo, O.F., McElfresh, C., Kaufmann, K., Marin, E., Borowski, L., Hopkins, P.E., Luo, J., Curtarolo, S., Brenner, D.W., Vecchio, K.S.: Phase stability and mechanical properties of novel high entropy transition metal carbides, Acta Mater., 166, 271 – 280, (2019).
16 Zhang, H., Akhtar, F.: Processing and characterization of refractory quaternary and quinary high-entropy carbide composite, Entropy, 21, 474, (2019).
17 Peng, C., Gao, X., Wang, M., Wu, L., Tang, H., Li, X., Zhang, Q., Ren, Y., Zhang, F., Wang, Y.: Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity, Appl. Phys. Lett., 114, 011905, (2019).
18 Ye, B., Wen, T., Liu, D., Chu, Y.: Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0. 2Ti0.2)C high-entropy ceramics at 1073 – 1473 K in air, Corros. Sci., 153, 327 – 332, (2019).
19 Wang, H., Cao, Y., Liu, W., Wang, Y.: Oxidation behavior of (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C-xSiC ceramics at high temperature, Ceram. Int., 46, 11160 – 11168, (2020).
20 Yan, X., Constantin, L., Lu, Y., Silvain, J.F., Nastasi, M., Cui, B.: (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity, J. Am. Ceram. Soc., 101, 4486 – 4491, (2018).
21 Zhang, Q., Zhang, J., Li, N., Chen, W.: Understanding the electronic structure, mechanical properties, and thermodynamic stability of (TiZrHfNbTa)C combined experiments and first-principles simulation, J. Appl. Phys., 126, 025101, (2019).
22 Chen, Y., Wang, J., Chen, M.: Enhancing the machining performance by cutting tool surface modifications: A focused review, Mach. Sci. Technol., 23, 477 – 509, (2019).
23 Harrington, T.J.: High entropy carbides: modeling, synthesis, and properties, UC San Diego, (2019).
24 Oses, C., Toher, C., Curtarolo, S.: High-entropy ceramics, Nat. Rev. Mater., 5, 295 – 309, (2020).
25 Feng, L., Fahrenholtz, W.G., Hilmas, G.E.: Low-temperature sintering of single-phase, high-entropy carbide ceramics, J. Am. Ceram. Soc., 102, 7217 – 7224, (2019).
26 Zhang, H.: High-entropy boron-carbide and its composites, Luleå University of Technology, (2020).
27 Sarker, P., Harrington, T., Toher, C., Oses, C., Samiee, M., Maria, J.P., Brenner, D.W., Vecchio, K.S., Curtarolo, S.: High-entropy high-hardness metal carbides discovered by entropy descriptors, Nat. Commun., 9, 4980, (2018).
28 Castle, E., Csanádi, T., Grasso, S., Dusza, J., Reece, M.: Processing and properties of high-entropy ultra-high temperature carbides, Sci. Rep., 8, 8609, (2018).
29 Zhou, J., Zhang, J., Zhang, F., Niu, B., Lei, L., Wang, W.: High-entropy Carbide: A novel class of multicomponent ceramics, Ceram. Int., 44, 22014 – 22018, (2018).
30 Wei, X.F., Liu, J.X., Li, F., Qin, Y., Liang, Y.C., Zhang, G.J.: High entropy carbide ceramics from different starting materials, J. Eur. Ceram. Soc., 39, 2989 – 2994, (2019).
31 Song, J., Duong, L.V., Trinh, P.V., Linh, N.N., Phuong, D.D., Seok, J., Kim, S.Y., Han, J., Kim, H.: Characteristics and sintering behavior of (Hf-Ta-Ti-Zr-Nb)C high-entropy carbides fabricated by high-energy ball milling and spark plasma sintering, J. Ceram. Sci. Technol., 1 – 8, (2022).
32 Pötschke, J., Dahal, M., Herrmann, M., Vornberger, A., Matthey, B., Michaelis, A.: Preparation of high-entropy carbides by different sintering techniques, J. Mater. Sci., 56, 11237 – 11247, (2021).
33 Moskovskikh, D.O., Vorotilo, S., Sedegov, A.S., Kuskov, K.V., Bardasova, K.V., Kiryukhantsev-korneev, Ph.V., Zhukovskyi, M., Mukasyan, A.S.: High-entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering, Ceram. Int., 46, 19008 – 19014, (2020).
34 Chaim, R, Chevallier, G., Weibel, A., Estournès, C.: Grain growth during spark plasma and flash sintering of ceramic nanoparticles: A review, J. Mater. Sci., 53, 3087 – 3105, (2017).
35 Mouawad, B., Soueidan, M., Fabrègue, D., Buttay, C., Bley, V., Allard, B., Morel, H.: Full densification of molybdenum powders using spark plasma sintering, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 43, 3402 – 3409, (2012).
Copyright
Göller Verlag GmbH